Effects of merohedric twinning on the diffraction pattern. Erratum and corrigenda

Massimo Nespolo, ${ }^{\text {a* }}$ Giovanni Ferraris ${ }^{\text {b }}$ and Bernd Souvignier ${ }^{\text {c }}$

${ }^{\text {a }}$ Université de Lorraine, Faculté des Sciences et Technologies, Institut Jean Barriol FR 2843, CRM2 UMR CNRS 7036, BP 70239, Boulevard des Aiguillettes, F-54506 Vandoeuvre-lès-Nancy cedex, France, ${ }^{\mathbf{b}}$ Dipartimento di Scienze della Terra, Università di Torino, via Valperga Caluso 35, I-10125 Torino, Italy, and ${ }^{\mathrm{C}}$ Institute for Mathematics, Astrophysics and Particle Physics, Faculty of Science, Mathematics and Computing Science, Radboud University Nijmegen, Postbus 9010, 6500 GL Nijmegen, The Netherlands. Correspondence e-mail:
massimo.nespolo@crm2.uhp-nancy.fr
A number of corrections are made to the article by Nespolo et al. [Acta Cryst. (2014), A70, 106-125].

On p. 110, the first sentence of the second paragraph should start as follows: 'Tables 2 to 5 list the 101 merohedral non-symmorphic types of space groups H that can give rise to 147 twin laws ...'

Misalignment of some of the entries the third and fourth columns of Table 3 make this table difficult to read. It is reproduced here with better alignment of the entries in these columns.

In Table 4, the asterisks (*) marking two of the entries in the fifth column should be omitted. The corrected table is given here.

In Table 7, the sixth entry from the bottom of the 13 th column, $l=4 n$, should not be bold.

We thank Howard Flack for spotting these errors.

Table 3
Classification of the 34 merohedral non-symmorphic space-group types H in the tetragonal crystal family, which can give rise to 42 twin laws.

Three twin laws (indicated by the symbol $\{$) have been split into two, because two different coset representatives give different results in terms of G, leading to a total of 45 cases. Among these, ten cannot be extended by a twofold operation s corresponding to the twin operation t ('no extension' in the table), and 16 more do have such an extension but none of the corresponding supergroups G has the same reflection conditions as H ('---' in the table). For these 26 cases (16 for class I and ten for class IIA) the \mathbf{G} model is ruled out on the basis of the observed reflection conditions: H in the corresponding row is shown in bold, accompanied by dashes in the last column. For the other 19 cases, the group $G^{\#}$ having the same reflection conditions as H is given; in the tetragonal crystal family, $G^{\#}$ is always a supergroup of H. Entries are ordered according to the diffraction symbol, as given in LVB.

Diffraction symbol	H	No.	t	$G^{\text {\# }}$	No.
Non-centrosymmetric hemihedral (only class I twinning possible)					
$P-2{ }^{-}$	$\boldsymbol{P 4 2} \mathbf{1 2}^{2}$		$\overline{1}$	---	---
	$\boldsymbol{P 4} \overline{4}_{1}{ }^{\text {m }}$ m	113		---	---
$P 4_{2}-$	$\mathrm{P4}_{2} 22$	93		---	---
$P 4_{2} 2_{1-}$	$P 4_{2} 2_{12} 2$	94		---	---
$P 4_{1}-{ }^{-}$	$P 4122$	91		no extension	---
	$\mathrm{P4}_{3} 22$	95		no extension	---
$P 4_{1} 2_{1}-{ }^{-}$	$P 4_{12} \mathbf{1}_{2} 2$	92		no extension	---
	$P \mathbf{P 3}_{3} \mathbf{1 2}^{2}$	96		no extension	--.
$P-$ c	$\mathrm{P}_{2} \mathrm{~m}_{2} \mathrm{mc}$	105		$\mathrm{P}_{2} / \mathrm{mmc}$	131
	$P \overline{4} 2 c$	112			
$P-2_{1} C$	$\boldsymbol{P} \overline{4} \mathbf{2}_{1} \boldsymbol{c}$	114		---	---
$P-b$ -	P4bm	100		P4/mbm	127
	$P \overline{4} b 2$	117			
$P-b c$	$\mathrm{P}_{2} \mathrm{bc}$	106		$P 4_{2} / m b c$	135
$P-c-$	$\mathrm{P}_{2} \mathrm{c}^{\text {cm }}$	101		$\mathrm{P} 4_{2} / \mathrm{mcm}$	132
	$P \overline{4} c 2$	116			
$P-c c$	$P 4 c c$	103		P4/mcc	124
P-n-	$\mathrm{P}_{2} \mathrm{n}^{\text {nm }}$	102		$\mathrm{P} 4_{2} / \mathrm{mnm}$	136
	$P \overline{4} n 2$	118			
$P-n c$	P4nc	104		P4/mnc	128
14_{1}--	I4,22	98		---	---
I--d	I4, ${ }^{\text {m }}$ d	109		---	---
	I $\overline{4} 2 \mathrm{~d}$	122		---	---
I-c-	14 cm	108		14/mcm	140
	$I \overline{4} c 2$	120			
I-cd	I4, cd	110		---	---
Centrosymmetric hemihedral (only class II A twinning possible)					
$P 4_{2}-$	$\boldsymbol{P 4} \mathbf{2}_{2} / \boldsymbol{m}$	84	\{ $\mathbf{2}_{[100]}$.--	
			- $2_{\text {[110] }}$	no extension	---
Pn--	P4/n	85	$\left\{\mathbf{2}_{[100]}\right.$	---	\cdots
			[$2_{[110]}$	P4/nmm	129
$P 4_{2} / n-$ -	$P 4_{2} / \boldsymbol{n}$	86	$\mathbf{2}_{[100]}$	---	---
Tetartohedral (both class I and class II A twinning possible)					
$P 4_{2}$--	$\mathrm{P4}_{2}$	77		$\mathrm{P}_{2} / \mathrm{m}$	84
			$2_{[100]}$	$\mathrm{P}_{2} 22$	93
			$\boldsymbol{m}_{[100]}$	---	---
$P 4_{1--}$	P4 ${ }_{1}$	76		no extension	---
			$2_{[100]}$	$P 4_{1} 22$	91
			$\boldsymbol{m}_{[100]}$	no extension	---
	P43	78	1	no extension	---
			$2_{[100]}$	$P 4322$	95
			$\boldsymbol{m}_{[100]}$	no extension	---
$I 4_{1}-$ -	I41	80	1	---	---
			$2_{[100]}$	I4, 22	98
			$\left\{\boldsymbol{m}_{\text {[100] }}\right.$	---	---
	I41/a	88	$\int_{\mathbf{2}} \boldsymbol{m}_{[100]}{ }_{\text {[110] }}$	no extension	----

addenda and errata

Table 4
Classification of the 27 merohedral non-symmorphic space-group types H in the hexagonal crystal family, which can give rise to 61 twin laws.

Among these, 29 cannot be extended by a twofold operation s corresponding to the twin operation t ('no extension' in the table), and two more have such an extension but none of the corresponding supergroups G has the same reflection conditions as H (--- ') in the table): for these 31 cases (15 for class I and 16 for class II A) the \mathbf{G} model is ruled out on the basis of the observed reflection conditions: H in the corresponding row is shown in bold, accompanied by dashes in the last column. For the other 30 cases, the group $G^{\#}$ having the same reflection conditions as H is given. Entries are ordered according to the diffraction symbol, as given in LVB.

Diffraction symbol	H	No.	t	$G^{\#}$	No.

Non-centrosymmetric hemihedral (only class I twinning possible)				
P--c	$\mathrm{Pb}_{3} m \mathrm{c}$	186	$\mathrm{PG}_{3} / \mathrm{mmc}$	194
	$P \overline{6} 2 c$	190		
P-c-	$\mathrm{P}_{3} \mathrm{~cm}$	185	$\mathrm{Pb}_{3} / \mathrm{mcm}$	193
	$P \overline{6} c 2$	188		
R-c	R3c	161	$R \overline{3} c$	167
$P 6_{3}{ }^{--}$	$\mathrm{Pb}_{3} 22$	182	---	---
$P 6_{2}-$	$\mathrm{P6}_{2} 22$	180	no extension	---
	$\mathrm{Pb}_{4} 22$	181	no extension	---
$P 6_{1}$--	P6122	178	no extension	---
	$\mathrm{Pb}_{5} 22$	179	no extension	---
P-cc	P6cc	184	P6/mcc	192

Centrosymmetric hemihedral (only class II A	twinning possible)				
$P 6_{3--}$	$\boldsymbol{P} \mathbf{6}_{3} / \boldsymbol{m}$	$\mathbf{1 7 6}$	$\boldsymbol{m}_{[100]}$	---	--
$P--c$	$P 3_{3} / c$	163	$m_{[001]}$	$P 6_{3} / m m c$	194
$P-c-$	$P 3 c 1$	165	$m_{[001]}$	$P 6_{3} / m c m$	193

$P 3_{1--}$	P3 ${ }_{1}$	144			
			$2_{[210]}$	$P 3_{1} 12$	151
			$2[100]$	$P 3_{1} 21$	152
			2 [001]	$P 6_{4}$	172
			$\boldsymbol{m}_{[001]}$	no extension	---
			$\boldsymbol{m}_{[100]}$	no extension	---
			$\boldsymbol{m}_{[210]}$	no extension	---
	P3 $\mathbf{1}_{12}$	151	1	no extension	--
			$2_{[001]}$	$\mathrm{Pb}_{4} 22$	181
			$\boldsymbol{m}_{[001]}$	no extension	---
	P3 21	152	1	no extension	---
			$2_{[001]}$	$\mathrm{Pb}_{4} 22$	181
			$\boldsymbol{m}_{\text {[001] }}$	no extension	---
	P3 ${ }_{2}$	145	1	no extension	\cdots
			$2_{\text {[210] }}$	$P 3_{2} 12$	153
			$2_{[100]}$	$\mathrm{P3}_{2} 21$	154
			2 [001]	P_{6}	171
			$\boldsymbol{m}_{[001]}$	no extension	---
			$\boldsymbol{m}_{[100]}$	no extension	---
			$\boldsymbol{m}_{[210]}$	no extension	---
	$\mathrm{P3}_{2} \mathbf{1 2}$	153	1	no extension	---
			$2_{\text {[001] }}$	$\mathrm{Pb}_{2} 22$	180
			$m_{\text {[001] }}$	no extension	---
	P321	154	1	no extension	---
			$2_{\text {[001] }}$	$\mathrm{Pb}_{2} 22$	180
			$\underline{m}_{[001]}$	no extension	--
$P--c$	P31c	159	$\overline{1}$	$P \overline{3} 1 c$	163
			$m_{\text {[001] }}$	$P 62 c$	190
			${ }_{\text {2 [001] }}$	${ }^{P 6} 6_{3} m c$	186
$P-c-$	P3c1	158	$\overline{1}$	$P \overline{3} c 1$	165
			$m_{\text {[001] }}$	$P \overline{6} c 2$	188
			$2[001]$	$\mathrm{Pb}_{3} \mathrm{~cm}$	185
$P 6_{3--}$	Pb_{3}	173	1	$\mathrm{Pb}_{3} / \mathrm{m}$	176
			$2_{[100]}$	$\mathrm{Pb}_{3} 22$	182
			$\boldsymbol{m}_{\text {[100] }}$	no extension	---
$P 6_{2--}$	Pb_{2}	171	$\overline{1}$	no extension	---
			$2_{[100]}$	$\mathrm{P}_{2} 22$	180
			$\boldsymbol{m}_{[100]}$	no extension	---
	P64	172		no extension	---
			$2_{[100]}$	$\mathrm{Pb}_{4} 22$	181
			$\boldsymbol{m}_{[100]}$	no extension	---
$P 6_{1--}$	$P 6_{1}$	169	1	no extension	---
			$2_{[100]}$	$P 6{ }_{1} 22$	178
			$\boldsymbol{m}_{[100]}$	no extension	---
	$\mathrm{P6}_{5}$	170	$2_{[100]}$	$P 6_{5} 22$	179
			$\boldsymbol{m}_{[100]}$	no extension	---

