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Corrections to the article by Janssen [Acta Cryst. (2012). A68,

667–674] are given.

The following corrections should be made in the article by Janssen

(2012):

(i) On page 671, right column, line 42, and in the caption to

Fig. 3, ‘n-heptane-urea (Mariette et al., 2012)’ should be changed to

‘nonadecane-urea’ (Toudic et al., 2011)’.

(ii) In the reference list, ‘Mariette, C., Huard, M., Rabiller, P.,

Nichols, S. M. E., Colivet, C., Janssen, T., Alquist, K. E., Hollings-

worth, M. D. & Toudic, B. (2012). J. Chem. Phys. 136, 104505’ should

be changed to ‘Toudic, B., Rabiller, P., Bourgeois, L., Huard, M.,

Ecolivet, C., McIntyre, G. J., Bourges, P., Breczewski, T. & Janssen, T.

(2011). Europhys. Lett. 93, 16003’.
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Historians often have debates about the beginning and end of a certain era. The

same discussion can be had about the history of aperiodic crystals. There are

reasons to claim that in 2012 one may celebrate the 50th anniversary of this field.

A short description is given of the development of this branch of crystal-

lography. It is argued that the most important point in its history is the discovery

of quasicrystals, which has been recognized by awarding the Nobel Prize in

Chemistry 2011 to Dan Shechtman.

1. Introduction

A hundred years ago modern crystallography started with the

work of von Laue, for which he received the Nobel Prize in

Physics in 1914 ‘for his discovery of the diffraction of X-rays

by crystals’. Since that time it was the common opinion that

the ground state of matter at low temperature is crystalline,

having lattice periodicity. It has taken more than 50 years to

discover that this is not always the case.

It is open to discussion when the first doubts about this

paradigm were raised. Magnetic spin waves became known,

and it was in 1960 that these were described as waves with a

period different from that of the underlying lattice (Herpin et

al., 1960). However, there was no indication that the observed

magnetic spin wave had an influence on the crystallographic

structure. Therefore, one could argue that the structure and

the magnetism were two independent properties.

A few years later, the situation changed when displacive

waves were observed which destroyed the lattice periodicity of

the crystal. Nevertheless, the structure, later called incom-

mensurate modulated structure, showed long-range order.

Such phases were found to appear in various ways and they

became a subject of research in the 1960s and 1970s.

Still later, other perfectly ordered structures without lattice

periodicity were found. In the following I shall give a brief

description of the development of this field. Of course, this is

quite a brief history of the field, with a personal view. For

further reading, see e.g. Yamamoto (1996) and Janssen et al.

(2007).

2. Incommensurate modulated phases

In 1963 a study appeared of the structure of NaNO2 (Yamada

et al., 1963). At 437 K it shows a ferroelectric phase transition.

In fact, there is a temperature range of width 1.5 K where the

ferroelectric phase is modulated with a period that does not fit

to the average structure. In the first publications this structure

was described in terms of micro-domains. A year later, de

Wolff et al. found satellite peaks in the diffraction pattern of

anhydrous Na2CO3 at room temperature (Brouns et al., 1964).

This could be interpreted as a periodic modulation of a basic

structure such that the period of the modulation is not a

period of the basic structure. Here, for the first time, it was

shown that crystals are not necessarily lattice periodic. Later it

was found that this incommensurate phase is an intermediate

phase. Above 757 K the crystal is periodic and has hexagonal

symmetry (� phase). Between 628 and 757 K it becomes

monoclinic (� phase), and below 628 K it is incommensurate

(� phase). Then, at 170 K the modulation period ‘locks in’: it

becomes commensurate (� phase). This is quite a common

situation, that the incommensurate phase is an intermediate

phase between two lattice periodic phases, but there are also

compounds that remain incommensurate down to the lowest

temperatures.

Because of the incommensurate periodicities, the diffrac-

tion pattern consists of sharp spots on positions which need

more than three integer indices. The electron density then is

what is called a quasiperiodic function in mathematics.

However, according to the mathematical definition, periodic

functions are also quasiperiodic. That is the reason why one

uses the word incommensurate to indicate that the structure

does not have lattice periodicity.

Soon after many other compounds with incommensurate

modulation were found. Two other systems studied in the

beginning were thiourea and K2SeO4. NaNO2 could also be

described as a system with incommensurate modulation. In

this case the modulation is not a displacive wave. The NO2

triangles point either to the left or to the right along the c

direction. In this case the probability of finding a triangle

pointing to the right is a periodic function with periodicity

incommensurate with the basic structure. This is a case of

occupation modulation. Incommensurate modulated crystals

turned out to be not rare at all. A substantial portion of the

earth’s crust consists of incommensurate modulated minerals.

de Wolff found an elegant way to describe the aperiodic

crystals as a restriction of a lattice periodic structure in four

dimensions to the three-dimensional physical space. The

fourth dimension then is the origin of the modulation wave



with respect to the basic structure. The four-dimensional

periodic structure can consequently be described using a

four-dimensional space group (de Wolff, 1974). Such four-

dimensional space groups had been studied by Janner and

Janssen as symmetry groups in space and time of electro-

dynamic systems. Formally these groups were identical with

the groups needed for incommensurate modulated crystals (de

Wolff et al., 1981). Together, and with corrections by A.

Yamamoto, the first list of all ‘3 + 1 superspace groups’ was

produced, where 3 is the dimension of physical space and 1 the

dimension of the additional ‘internal space’, time is for space–

time groups and phase of the modulation is for modulated

phases.

If a lattice periodic structure in four dimensions is inter-

sected by a three-dimensional subspace, the projection of its

Fourier transform is precisely the Fourier transform of the

obtained three-dimensional intersection. The intersection is

quasiperiodic and incommensurate if the intersecting

subspace does not contain three independent translation

vectors which leave the four-dimensional structure invariant.

This procedure may be generalized to arbitrary dimensions.

Suppose that �ðrÞ is the intersection of a lattice periodic

function in n dimensions and the three-dimensional physical

space. Then

�ðrÞ ¼
P

k

�̂�ðkÞ expðik � rÞ; with k ¼
Pn
i¼1

hia
�
i : ð1Þ

The minimum number of basis vectors needed to index the

diffraction peaks with integers is called the rank of the

structure, and this is equal to the dimension of the higher-

dimensional space in which the lattice periodic structure

is defined. The n basis vectors a�i are the projection of the n

basis vectors of the reciprocal lattice corresponding to the

n-dimensional lattice periodic structure. On the other hand,

the Fourier component in the point k has the same value as the

Fourier component in the n-dimensional vector of which k is

the projection. This determines the lattice periodic structure in

n dimensions, which has as symmetry group an n-dimensional

space group, the superspace group. If R is a rotation (or, more

generally, an orthogonal transformation) leaving the Fourier

transform in three dimensions invariant, it can be written as an

n-dimensional integer matrix, on the basis a�i . All the opera-

tions R form a finite group corresponding to an orthogonal

group in n dimensions, the point group of the superspace

group. For modulated phases it has the additional property

that the R’s leave the lattice of main reflections invariant. For

that reason the point group must be one of the crystal-

lographic point groups in three dimensions. Of course, one

does not measure the Fourier transform, but only its absolute

value. Therefore, we still have a phase problem. Anyway, from

the symmetry and the systematic extinctions, one gets infor-

mation about the n-dimensional structure and its superspace

group.

In principle, the structure determination starts with the

basic structure. Considering the main reflections only, these

determine a lattice periodic structure, the average structure.

This is the density distribution obtained as the inverse Fourier

transform of the Fourier components of the main reflections.

These are usually distributions in the unit cell from which one

may obtain the atomic positions of the basis structure. The

second step then is the determination of the functions ujðn; rIÞ

and pjðn; rIÞ of the displacive and occupational modulation,

respectively.

Since the first discovery, hundreds of incommensurate

phases have been found and their structure has been deter-

mined. And they are by no means rare. Many minerals have

been found to be incommensurately modulated. Lists of

higher-dimensional superspace groups have been determined

(de Wolff et al., 1981; Stokes et al., 2011) and computer

programs have been developed to help in the structure

determination. The two main examples are JANA by V.

Petriček et al. and REMOS by A. Yamamoto. Lists of the

corresponding groups for the action in reciprocal space, where

translations in internal space appear as phase factors, were

published by Mermin et al. (Rabson & Mermin, 1991; Mermin,

1992). The modulation functions have to be parametrized in

order to make a determination possible. In principle, the

problem is much more complex than for lattice periodic

structures, where only a finite number of atomic positions have

to be determined.

3. Incommensurate composites

In 1978 a new class of aperiodic crystals was discovered. The

first example was ‘fool’s gold’: Hg3��AsF6. It consists of a ‘host

lattice’, consisting of AsF6 octahedra, in the channels of which

chains of mercury are positioned, in two different directions.

Because the repeat distance of the mercury atoms is incom-

mensurate with the lattice constant of the host, the system is

not periodic (Pouget et al., 1978). This class is called that of

incommensurate composites, because the materials consist of

a number of mutually incommensurate subsystems.

The subsystems have a lattice periodic basic structure, but

this is modulated because of the interaction with the other

subsystems. If there are m subsystems, there are at most 3m

independent basis vectors for the whole basic structure.

Generally, these 3m vectors may be expressed in terms of a

smaller number (n) using integer indices. For example, the

mercury chain compound (m ¼ 3) can be indexed using four

indices. The basis vectors are those of the AsF6 subsystem plus

the additional vector (3 � �)a� + (1 � �)b�. In general, the jth

basis vector of the �th subsystem can be expressed in terms of

n new reciprocal vectors a�j as follows:

a��j ¼
Pn
i¼1

Z�
jia
�
i ðintegers Z�

jiÞ: ð2Þ

Then the same procedure can be used as before for the

modulated phases to determine an n-dimensional lattice

periodic structure which gives the real structure as an inter-

section with the three-dimensional physical space (Janner &

Janssen, 1980a,b). The structure and the superspace group

may be determined in the same way as before. There is one

difference. Because in this case there is no obvious basic

structure, and symmetry operations may map one subsystem
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onto another, the ‘crystallographic condition’ (the require-

ment that the point group should be isomorphic to a three-

dimensional crystallographic point group) does no longer

hold.

A simple model system may show this. Consider a layered

structure with identical square layers perpendicular to the c

axis, the even layers having translations along the a and b axes,

and the odd layers turned over 45�. Then one subsystem is

tetragonal with reciprocal basis vectors a�1, b�1 and c�, and the

other one with a�2; b�2 and c�, such that a�2 (respectively, b�2) is a�1
(respectively, b�1) turned over 45�. Among these, five are

independent (if one limits oneself to integers). Therefore, n = 5

and the point group has an eightfold rotation. However, such a

system has never been observed.

The simple model above is an example of an important class

of incommensurate composites, the incommensurate layer or

misfit structures. For many examples of such systems the

structure has been determined (van Smaalen, 1991).

Another interesting subclass of incommensurate compo-

sites is that of urea-alkanes. And finally, one can use the same

approach for monolayers on a substrate when these are

mutually incommensurate.

Structure determination of incommensurate composites is

harder than for modulated structures, because the subsystems

are, in principle, equivalent. Consider a simple example with

two subsystems in parallel chains, the first with a basic struc-

ture with lattice vectors a; b and c, the second with a; b and

c=�. These subsystems are modulated because of the inter-

action between the subsystems. Then the general diffraction

vector is given by H ¼ ha� þ kb� þ ‘c� þmq with q ¼ �c�.

One may distinguish common peaks (‘ ¼ m ¼ 0), host peaks

(m ¼ 0; ‘ 6¼ 0), guest peaks (‘ ¼ 0;m 6¼ 0) and summation

peaks (m 6¼ 0; ‘ 6¼ 0). The basic positions and modulation

functions have to be determined simultaneously because the

modulation peaks of one subsystem coincide with the main

peaks of another. The number of precise structure determi-

nations of incommensurate composites is relatively small

(Yamamoto, 1993).

4. Tilings

Not only in crystallography was there an intense activity on

ordered structures without lattice periodicity, in mathematics

one had the following ‘tiling’ problem. Given a finite set of

tiles, can one cover the plane with copies of these tiles such

that there are no gaps and no overlaps? Are there sets that

force the tiling to be aperiodic? There were answers for

specific sets with many different tiles. The problem of reducing

the size of the set was solved by R. Penrose, who constructed a

set of two tiles together with rules to put the tiles together that

produced such an aperiodic tiling, later called the Penrose

tiling. The tiles are rhombs, one with an angle of 36� and one

with an angle of 72�. A variant of this tiling can be made with

two tiles with the shape of a ‘dart’ and a ‘kite’. (The two can

easily be transformed into each other.) Many interesting

properties of these tilings were proved. An algorithm to

construct such a tiling was given by N. G. de Bruijn (de Bruijn,

1981). A very interesting review appeared in the January 1977

issue of Scientific American, written by Martin Gardner

(Gardner, 1977). Many crystallographers have had the idea

that there could be crystals with a comparable structure. The

tilings (there are uncountably many of them) are quasi-

periodic. This led A. Mackay to determine experimentally the

diffraction pattern of such a tiling (Mackay, 1982). This pattern

shows tenfold symmetry. So, here was an example of a

perfectly ordered aperiodic structure which has a rotational

symmetry that cannot occur in periodic crystals.

It is easy to index the diffraction pattern shown by Mackay

(Fig. 1). One needs four integer indices. The four basis vectors

are mapped on positions with integer indices under a 72�

rotation. This gives a four-dimensional matrix, which on an

orthogonal basis combines a two-dimensional rotation over

72� with another two-dimensional rotation over 144�. In direct

space this rotation leaves a four-dimensional lattice invariant
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(a) Diffraction pattern of a Penrose tiling (Mackay, 1982). (b) Indexing of
the pattern.



for which the unit cell may be chosen. The four basis vectors

have a metric tensor given by

gij ¼ ai � aj

¼ a2

2 �0:5 �0:5 �0:5

�0:5 2 �0:5 �0:5

�0:5 �0:5 2 �0:5

�0:5 �0:5 �0:5 2

0
BBB@

1
CCCA; i; j ¼ 1; . . . ; 4:

ð3Þ

For example, one may choose four four-dimensional vectors

½cosð2�n=5Þ; sinð2�n=5Þ; cosð4�n=5Þ; sinð4�n=5Þ�;

ðn ¼ 1; . . . ; 4Þ: ð4Þ

However, it is less simple to determine the objects in the unit

cell (the ‘atomic surfaces’) which give the vertices of the tiling

by intersecting with the two-dimensional ‘physical’ space. On

the basis of the construction given by de Bruijn it is possible to

show that there are four objects per unit cell, two-dimensional

pentagons in 4-space. Contrary to most modulated structures,

the higher-dimensional objects are not connected.

The tiling problem is closely related to the mathematical

topic of Meyer sets or model sets. The method used to

construct these special sets in a plane or a space by projection

from a higher-dimensional set of points is called the cut-and-

project method (for a description see Baake & Höffe, 2000).

This method is equivalent with the construction of aperiodic

tilings by intersection of the space with a periodic array of flat

atomic surfaces.

5. Quasicrystals

For the scientists working in the field of incommensurate

crystals, it was a big and pleasant surprise when on 8 April

1982 Dan Shechtman discovered quasicrystals (Shechtman et

al., 1984). The story has been told several times. The referees

of the journal to which the paper was sent clearly did not

belong to the community around aperiodic crystals, as a

consequence of which publication of the paper took time. The

small AlMn quasicrystals of Shechtman showed not only

fivefold (or tenfold) symmetry but even icosahedral symmetry.

This asked for a generalization of the Penrose tiling to three

dimensions, and this was given in Duneau & Katz (1985) and

Kramer & Neri (1984). The atomic surfaces in this case are

triacontahedra attached to the vertices of a six-dimensional

lattice. However, for the quasicrystals the question ‘where are

the atoms?’ could not be answered for quite some time. One of

the problems was the quality and size of the samples. But

within a couple of years much better and larger crystals could

be grown. A new class of quasicrystals was found which were

periodic in one direction and aperiodic in the other two: the

decagonal-phase quasicrystals. Better crystals could be

grown with a ternary structure (e.g.AlMnPd, AlCuFe), and in

2000 another class of binary quasicrystals and icosahedral

symmetry was found (YbCd) (Tsai et al., 2000).

Immediately after the referees were convinced and the

paper had been published, a huge research activity on these

materials started. Quasicrystals got much more attention than

the earlier aperiodic crystals. There are several reasons for

that. The incommensurate modulated and composite struc-

tures have subsystems with lattice periodic basic structure. In

some sense the physical properties may often be derived from

those of the subsystems. That is not fully true, because the

change from unmodulated to modulated structure is often

discontinuous, and for composites the subsystems could not

exist as such without the presence of the other subsystems.

Also the character of physical properties, like the behaviour of

electrons and phonons, shows the same difference with lattice

periodic structures for incommensurate phases as for quasi-

crystals, but usually the difference is more pronounced in the

latter.

The term ‘quasicrystal’ was coined by Levine & Steinhardt

(1986) soon after the first publication by Shechtman et al.

(1984). It is supposed to stand for ‘quasiperiodic crystal’, but

this choice was perhaps questionable for two reasons. First, the

mathematical definition, given by Bohl, is such that every

periodic function is also quasiperiodic. This would mean that

conventional lattice periodic crystals are also quasiperiodic.

This was the reason for calling incommensurate modulated

structures ‘incommensurate’ instead of ‘quasiperiodic’. The

second point is that not all (aperiodic) quasiperiodic

crystals are usually considered to be quasicrystals. For

example, not everyone will call �-Na2CO3 a quasicrystal. The

non-crystallographic symmetry (i.e. non-crystallographic in

three dimensions, such as fivefold and the like) is considered

by many as essential. However, as seen above, such non-

crystallographic symmetry is in principle allowed in incom-

mensurate composites, and an icosahedral quasicrystal may

lose its non-crystallographic symmetry by a small strain of the

six-dimensional structure, leading to an aperiodic structure

with tetrahedral symmetry. There is still not a consensus about

the definition of ‘quasicrystal’. However, only the limits of the

notion are disputed. For example, everybody will agree that

icosahedral AlMnPd is a quasicrystal. An unambiguous notion

is the general term ‘aperiodic crystal’, which has sharp

diffraction spots spanning the whole space, but is not lattice

periodic.

This uncertainty about the classification applies also to

mesoscopic structures with non-crystallographic symmetries.

This is a rather recent development. Non-crystallographic

symmetries have been found in liquid crystals and polymer

systems. However, these structures with non-crystallographic

symmetry are mesoscopic, their diffraction spots are fairly

sharp, but probably not delta peaks, even in an ideal situation.

The general approach to quasiperiodic structures may also

be applied to quasicrystals (Janssen, 1986). Choosing a basis

for the diffraction pattern, one may lift this to a basis of a

reciprocal lattice in n-dimensional space. From this a basis for

a direct lattice can be constructed. The superspace group is, if

one disregards the phase problem, determined by the

symmetry of the pattern and the systematic extinctions. The

parametrization is a much more complicated problem than for
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the incommensurate phases. One has to determine the posi-

tion and the shape of the atomic surfaces, and these are not

easy to parametrize. Superspace groups for quasicrystals are

listed in Janssen (1988), Rabson & Mermin (1991), and

Mermin (1992). Sometimes an approximant may help, if it

exists. The other way is to search for the electron-density map.

With the help of modern developments, like the maximum-

entropy method or the charge-flipping technique, one may

find an approximate solution. Several models have been

developed for icosahedral and decagonal (Steurer, 2004)

quasicrystals. The first accurate structure determination of an

icosahedral phase was given for the ‘Tsai-type’ CdYb quasi-

crystal (Takakura et al., 2007).

6. Incommensurate magnetic structures

The earliest aperiodic crystals were incommensurate magnetic

structures. For crystallography these were less relevant as long

as the interaction between the lattice structure and the

magnetic structure could not be measured. Later on, this spin–

lattice interaction could be observed, which leads us back to

the consideration of these structures. Generally, in the

magnetic state the non-uniform magnetic structure has peri-

odicity (Fig. 2), and by the interaction the nuclear structure

becomes modulated. Then, for a simple situation, spins and

atomic positions are given by

SðrÞ ¼
P

q

ŜSðqÞ exp½iq � ðrÞ� ð5Þ

rðn; jÞ ¼ nþ rj þ
P

q

ûuðqÞ exp½iq � ðnþ rjÞ�; ð6Þ

where q is incommensurate with the reciprocal lattice of the

lattice periodic structure with nodes n and positions rj in the

unit cell. Both structures may be embedded in a higher-

dimensional superspace. Then, one gets Sðr; rIÞ and ujðn; rIÞ.

The action of a superspace-group element g may be

combined with the time reversal 	. Under the action of an

element g ¼ fðR;RIÞ; ðv; vIÞg the spin arrangement changes to

TgSðr; rIÞ ¼ detðRÞ
P

q

RSðR�1qÞ exp½iq � ðr� vÞ þ iqIðrI � vIÞ�

ð7Þ

and the combination Tg	 gives the same expression with an

additional minus sign. Furthermore,

Tguðr; rIÞ ¼
P

q

RuðR�1qÞ exp½iq � ðr� vÞ þ iqIðrI � vIÞ� ð8Þ

and Tg	 act in the same way. Then the symmetry of the nuclear

structure is the superspace group leaving the nuclear structure

invariant, and the magnetic superspace group consists of all

elements leaving both the nuclear structure and the spin

function invariant (Janner & Janssen, 1980a). Above the Curie

temperature these two groups coincide. In particular, in

systems with rare earth elements complicated spin structures

and phase transitions may occur (see e.g. Schobinger-

Papamantellos et al., 2010). Recently, a number of magnetic, in

particular multiferroic, compounds have been investigated

with the superspace approach (Perez-Mato et al., 2012). In

multiferroics, the interaction of the magnetic and nuclear

structures is essential. So, an incommensurate magnetic

structure leads to an incommensurate nuclear structure.

Although some quasicrystals contain magnetic atoms (Co

for example), long-range magnetic order has not yet been

found there. However, when such a compound exists it should

be described by a magnetic superspace group. In this way,

incommensurate (or quasicrystalline) magnetic structures

have been incorporated into the class of aperiodic crystals.

That is reason to argue that this field has reached its 50th

anniversary. Half the age of the field of X-ray crystallography,

but still respectable.

7. Phase transitions

Aperiodic crystals are found within bounded regions of phase

space. For these crystals one may distinguish two types of

phase transitions.

The first is a transition where the dimension of the

embedding space (which is equal to the rank of the Fourier

module) changes. An example is the transition from a lattice

periodic structure in three dimensions to an incommensurate

modulated structure of rank 4. A frequent mechanism is that a

phonon mode with incommensurate wavevector becomes

unstable (a soft mode). Very often, the modulation wave-

vector changes with temperature and becomes commensurate

at the ‘lock-in’ transition, a first-order transition from rank-4

incommensurate to rank-3 commensurate structure.

In incommensurate composites, more situations may occur.

Often, one of the subsystems is liquid-like at high temperature

(and the rank is 3) and shows a phase-ordering transition to a

higher-rank structure. This is also a transition where the rank

changes. Then the structure of one of the subsystems may

change, or the relation between subsystems may become

different. An example of this situation has been observed in

n-heptane-urea (Mariette et al., 2012), where in the phase

diagram one may distinguish crystals of rank 3, 4 and 5 (Fig. 3).

In quasicrystals modulations have been reported. In an

icosahedral phase with an icosahedral incommensurate

modulation this would mean a transition from a rank-6 to a

rank-12 quasicrystal.

The second type of phase transitions is that where the

dimension of the superspace does not change. Among these

are the centring transitions. Transitions from a primitive

icosahedral to a face-centred icosahedral structure have been

found. The rank here remains 6, and the point group remains

the group 53mð523m), which means that the physical space

transforms with the three-dimensional icosahedral (non-

crystallographic) point group 53m and the perpendicular (or
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internal) space with the equivalent group 523m, such that the

72� rotation in physical space is combined with the 144�

rotation in perpendicular space.

In aperiodic crystal structures one finds both first- and

second-order transitions. The latter can be described using the

Landau theory of phase transitions, which involves the change

of symmetry from a group to a subgroup. For incommensurate

crystals the n-dimensional superspace group is not a subgroup

of the three-dimensional space group of the unmodulated

structure. Therefore, the theory must be slightly reformulated,

either by extending the space group to superspace or by

considering space-dependent order parameters. Lock-in

transitions and crystal–quasicrystal transitions are usually of

first order.

8. Physical properties of aperiodic crystals

The discovery of aperiodic crystals, and in particular of

quasicrystals, has led to interesting problems in various fields,

such as crystallography, physics, chemistry and mathematics.

In crystallography, the IUCr gave a new definition of ‘crystal’.

‘By ‘crystal’ we mean any solid having an essentially discrete

diffraction diagram, and by ‘aperiodic crystal’ we mean any

crystal in which three-dimensional lattice periodicity can be

considered to be absent. As an extension, the latter term will

also include those crystals in which three-dimensional peri-

odicity is too weak to describe significant correlations in the

atomic configuration, but which can be properly described by

crystallographic methods developed for actual aperiodic crys-

tals.’ Under this definition aperiodic crystals are crystals.

In conventional rank-3 crystals physical states (electrons

and phonons) are characterized by irreducible representations

of the symmetry group. If the latter is the lattice translation

group, states are characterized by a vector from the Brillouin

zone (BZ). Aperiodic crystals only have a BZ of volume zero,

unless one considers the lattice periodic structure in super-

space. However, this has not yet been exploited in a conve-

nient way. Just as in rank-3 crystals, where the BZ is the region

of vectors closer to the origin than to any other reciprocal-

lattice point, for aperiodic crystals one has introduced a

pseudo-Brillouin zone, the region closer to the origin than to

any ‘strong’ diffraction vector. This may be practical, but it is

arbitrary to a certain point. This means that there is not yet a

rigorous classification scheme for states in aperiodic crystals.

For quasiperiodic functions and for certain classes of tilings,

it has been shown that the diffraction pattern contains delta

peaks. An open question still is ‘for what systems does this

hold in general?’. Here, mathematicians only have partial

answers (Baake et al., 2003).

Electron and phonon states in aperiodic crystals have, till

now, been treated in a practical way. One uses approximants,

lattice periodic structures which resemble aperiodic crystals.

For tiling models this can be done in a systematic way if one

approaches an incommensurate value in perpendicular space

by truncation of its continued fraction expansion. Using rather

small approximants one gets a satisfying agreement between

calculations and experiments (de Boissieu et al., 2007).

However, the fundamental problem remains. One may

solve the problem in superspace. Using simple models one

may embed the electron or vibration states in superspace. This

is feasible for low energies, but for higher energy the states no

longer have a smooth character. In one-dimensional models

one finds a fractal structure of the wavefunctions which means

that the calculation becomes extremely complicated (Fig. 4).

All classes of aperiodic crystals share the property that the

projection of the translation lattice points in superspace on

internal space is a dense set. The structure of the crystal in a

physical space through each of these points is the same, up to a

translation. Consequently, they have the same energy. This

means that small fluctuations along the internal space (phason

fluctuations) have a low energy. In modulated phases these

correspond to long-wavelength excitations (phasons) with a

linear dispersion if the modulation function is continuous. For

incommensurate composites these fluctuations correspond to

a mutual motion of the subsystems. For quasicrystals the

phason fluctuations may have a local or a collective character.

In all cases these dynamic phasons are overdamped. For

quasicrystals, this is clear, because the phasons imply finite size

jumps of atoms. For composites and modulated phases with a

smooth modulation function, the damping is not yet comple-

tely understood.

The stabilization of an incommensurate spin wave may be

explained in simple models with first- and second-neighbour

interaction, as shown by Elliott (1961) and in the ANNNI

(Axial Next Nearest Neighbour Interaction) model (Selke,

1988). By adding a spin–lattice coupling this may lead to a

deformation of the lattice as well (Janssen, 1991). Analogous

models for the appearance of an incommensurate modulated

phase have been developed as well. An example is the

DIFFFOUR (Discrete Frustrated �4) model (Janssen & Tjon,

1982).

For quasicrystals, tiling models were soon developed.

Choosing atomic positions and interatomic interactions

appropriately, one may construct stable quasicrystal struc-
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Figure 3
Phase diagram of n-heptane-urea (Mariette et al., 2012).



tures. These were first based on the calculation of the energy

and a proof that this energy is a stable minimum for the

quasicrystal configuration. Later it was pointed out that a

slight shift of the atomic surfaces in superspace creates phason

flips, and that this could lead to a stabilization of the quasi-

crystal configuration by an entropy term associated with the

phason flips. Phason flips lead to a random tiling model for

quasicrystals (Henley, 1991) also with sharp diffraction peaks,

next to a diffuse part (Baake & Höffe, 2000). Then the

discussion focused on the question of whether there are

quasicrystals at low temperature. The situation is not different

from that for incommensurate modulated phases. Very often,

a modulated phase is an intermediate phase between a high-

temperature lattice periodic structure and a low-temperature

superstructure. Near the lowest phase transition the modula-

tion often becomes discontinuous, in models. Then the struc-

ture in superspace is similar to that for quasicrystals and

entropy may become important. However, there are also

many incommensurate phases which remain aperiodic down

to the lowest temperature. This shows that both energy and

entropy play a role in the stabilization. Perhaps the question

‘energy or entropy?’ is not relevant, in general.

The special physical properties of aperiodic crystals could,

in principle, be exploited for applications. Until now their

number has been relatively small, but there are many potential

applications (see e.g. Dubois, 2005).

9. Summary

In the last 50 years aperiodic crystals, to which belong

incommensurate phases, incommensurate spin structures and

quasicrystals, have become an important field of research. This

is especially so since the discovery of quasicrystals, 30 years

ago. Even quantitatively the topic is important, because there

are aperiodic crystals everywhere, not only in the laboratory,

but also in nature. The new materials required a new definition

of the notion of a crystal. Moreover, the standard techniques

for studying physical properties were, generally, only valid for

lattice periodic materials. New techniques had to be devel-

oped. To mention a few, there is no longer a Brillouin zone,

new methods for determining the structure had to be devel-

oped and the usual ways to calculate electron bands and lattice

vibrations did not work for these materials. This has led to

interesting developments in other domains of science as well.

Insight into the structure and properties of aperiodic crys-

tals has grown enormously, but there are still fundamental

questions to be solved. Some of them are: what is the character

and spectrum of electrons in aperiodic crystals?; how can one

characterize states by representations of the symmetry group?;

and what is the fundamental reason for the stability of

quasicrystals?
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