transformation, a direct relation or a common subgroup with physical or chemical sense through group-subgroup relationships cannot be established [2]. How to deal with disruptive phase transformations using symmetry concepts is an open question very interesting to study.

[1] Elliot, J.C.&Young, R.A. (1968) Bull. Soc. Chim. France. (No. special), 1763.

[2] Ulrich Müller, private communication.

Keywords: group-subgroup relationships, phase transitions and structure, point defects

P08.06.32

Acta Cryst. (2008). A64, C428

Phases and structures of K_xNa_{1-x}NbO₃ (KNN) at the high sodium end

Nan Zhang¹, A M Glazer¹, D Baker², P A Thomas²

¹University of Oxford, Department of Physics, Clarendon Lab, Parks Road, Oxford, Oxfordshire, OX1 3PU, UK, ²Department of Physics, University of Warwick, Coventry, CV4 7AL. UK, E-mail : n.zhang1@ physics.ox.ac.uk

Sodium potassium niobate K_xNa_{1-x}NbO₃ (KNN) is a possible leadfree piezoelectric material to substitute for lead zirconium titanate (PZT), which is the leading material in piezoelectric applications. However, the presence of Pb in PZT makes it toxic, and it is for this reason that lead-free piezoelectrics are sought after. This newer lead-free material is united with PZT in that there is a region in their phase diagrams where there appears to be a sudden change in crystal structure. This region has been termed the Morphotropic Phase Boundary (MPB) and appears to coincide with the maximum piezo-response. Of particular interest in K_xNa_{1-x}NbO₃ (KNN) is the presence of three morphotropic phase boundaries (MPB) that occur at x = 0.18, x = 0.35, and x = 0.48. The phases of sodium potassium niobate over the whole concentration range at various temperatures have been studied, especially at the high sodium end near the phase boundary at x=0.18. Several neutron diffraction experiments at room temperature and low temperatures were made at the ILL, Grenoble and the phases and structures were carefully refined. X-ray powder diffraction experiments and birefringence measurements of single crystals were carried out in the University of Oxford to complement the neutron work and to complete the phase diagram.

Keywords: morphotropic phase boundary, sodium potassium niobate, neutron and X-ray scattering

P08.06.33

Acta Cryst. (2008). A64, C428

Transparency and structure of eye lens studied by high-pressure small-angle X-ray scattering

Tetsuro Fujisawa^{1,2}, Hiroshi Matsuo², Keiji Naruse³, Satoshi Mohri³ ¹Gifu University, Graduate School of Engineering, 1-1 Yanagido, Gifu, Gifu, 501-1193, Japan, ²RIKEN Harima institute, 1-1 Kouto, Sayo, Hyogo, 679-5148, ³Okayama University, 2-5-1 shikada, okayama, okayama 700-8558, E-mail: fujisawa@gifu-u.ac.jp

Short range, liquid-like order of the crystalline proteins, especially α -crystalline, accounts for eye lens transparency. On concentrating cytoplasmic crystalline proteins, it was reported that eye lens became transparent and that its scattering showed decreasing at low *S* as well as more pronounced side maxima at 0.007 Å⁻¹ of *S*, *i.e.*, typical

character of structure factor of DLVO potentials. Applying high pressure less than 100MPa is not supposed to unfold α -crystalline, rather to perturb particle interactions by diminishing hydrophobic and increasing electrostatic interactions. High pressure is therefore an important tool to characterize protein-protein interaction on physicochemical basis. We measured in situ high pressure transition of rat eye lens nucleus at post natal days (PND) 14 to 20 by high pressure small-angle scattering (HP-SAXS) as well as light absorption. All HP-SAXS data were collected at RIKEN beamline BL45XU/SPring-8. At 15°C on ambient pressure they were turbid. Applying high hydrostatic pressure, eye lens got transparent over ca. 80 MPa and turbid again upon decompression, which was found to be reversible. Upon compression the scaled HP-SAXS curves decreased at small S and interestingly, side maxima 0.007 Å⁻¹ of S, feature of DLVO potentials, became less pronounced. In transparent eye lens at high pressure environment, the structure order of eye proteins seems uniform. We will report further on the basis of structure parameter changes obtained by HP-SAXS. Reference

T. Fujisawa et al., Acta Cryst. (2005) A61, C46

H. Bloemendal et al., Progress in Biophysics & Molecular Biology (2004) 86, 407-485.

F. Skouri-Panet et al., Biochimica et Biophysica Acta (2006) 1764, 372-383.

Keywords: high pressure small-angle scattering, protein protein interaction, structure order

P08.06.34

Acta Cryst. (2008). A64, C428-429

Structure and phase transition in a lead-based inorganic-organic perovskites C₅H₁₀NH₂PbI₃

<u>Miwako Takahashi</u>, Munehiko Nakatsuma, Yuji Fujii, Kunimitsu Kataoka, Takurou Kawasaki, Ken-ichi Ohshima University of Tsukuba/Japan, Institute of Materials Science, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8573, Japan, E-mail : takahasi@bukko. bk.tsukuba.ac.jp

C5H10NH2PbI3 has a lead-based inorganic-organic perovskites structure consisting of semiconducting parts which are composed of one-dimensional chains of face-sharing lead-iodide octahedra and barrier parts composed of C5H10NH2+ molecules. The leadiodide chain is isolated by the organic molecules to be a quantum wire, so this material can be regarded as a naturally self-organized one-dimensional system. The crystal structure at room temperature is orthorhombic with space group of $C222_1$. It has been shown by Raman scattering, DSC and optical absorption measurements that the structure undergoes temperature-induced successive phase transitions: phase IV at room temperature, phase III for 255.5K to 284.5K, phase II for 250K to 255.5K and phase I below 250K, which involve rotational/orientational ordering of the organic C₅H₁₀NH₂⁺ parts. However, its precise structure has not been determined yet. We have been studying structure and phase transition in this material by combining the data obtained by neutron and x-ray single crystal diffraction, and found drastic structural changes take place in the successive phase transitions. The lattice parameters shows steplike changes at the transition temperatures with considerble large contraction of lattice b. Below 285K, 400 peak is found to separates in two indicating that the crystal lattice changes from orthorhombic to monoclinic below 285K. The angle between the splitting peaks increases linearly with decreasing temperature down to 255K and decreasing again up to room temperature without any hysteresis. Below 255K, diffuse peaks appear at the reciprocal points at which reflection is forbidden in the C-centered lattice. These results show

that the large structural changes are accompanied with the successive phase transitions.

Keywords: inorganic organic compounds, neutron X-ray scattering, structural phase transitions

P08.06.35

Acta Cryst. (2008). A64, C429

Powder neutron diffraction studies of inorganic ferroelectric phase transitions

Philip Lightfoot

University of St Andrews, Chemistry, North Haugh, St Andrews, Fife, KY16 9ST, UK, E-mail:pl@st-and.ac.uk

We shall present some of our recent results on the nature of the ferroelectric-paraelectric and other phase transitions in a variety of inorganic systems, as studied by variable temperature powder neutron diffraction. Examples will include the contrasting behaviours of the Aurivillius family of layered perovskites including SrBi₂Ta₂O₉ and Bi₂WO₆; the former involves simply 'octahedral tilt' type transitions, whereas the latter involves a reconstructive transition from cornershared to edge-shared octahedra. Other examples will include the unusual layered oxyfluoride Na₅W₃O₉F₅, which exhibits a remarkably high TC for a fluoride (~ 800K), and which shows 3 ferroelectric phases below TC. Finally, the important multiferroic BiFeO₃ has been studied, and we will comment on its structural behaviour versus temperature, especially around TC, and including the possibility of a cubic paraelectric phase.

Keywords: ferroelectric, powder neutron diffraction, phase transitions

P08.06.36

Acta Cryst. (2008). A64, C429

Structural phase transitions in *trans*-1,2diaminocyclohexane derivative

Maciej Kubicki, Teresa Borowiak

Adam Mickiewicz University, Chemistry, Grunwaldzka 6, Poznan, wlkp, 60-780, Poland, E-mail:mkubicki@amu.edu.pl

trans-1,2-Diaminocyclohexane, a rigid molecule of C_2 symmetry and two equatorial C-N bonds, was used as a chiral element of hydrogen-bonded networks and also as a bidentate ligand for chiral catalysts. We reported the synthesis and room temperature crystal structure of trans-(1R,2R)-N-acetyl-N,N'-di-(4-bromophenyl)-1,2-diamino cyclohexane [1]. Quite unexpectedly we have found out two reversible phase transitions in the temperature range 100-295K. The previously published room-temperature crystal structure is monoclinic $P2_1$, with Z'=1. The structure is disordered: one of the bromine atoms occupies two alternative positions with equal probability (s.o.f.'s are 0.5). The anisotropic refinement of bromine atoms in both positions was very stable and led to perfectly reasonable geometries and U_{ij} values. On cooling down, below ca. 250K, the crystal undergoes the continuous phase transition to another monoclinic P21 phase, with a doubled value of the c unit-cell parameter, and two symmetry-independent molecules (Z'=2). The attempts were made to refine either the room temperature structure in the low temperature unit cell or vice versa, but none of these refinements led to reasonable results. Of course room temperature structure could be refined in a bigger unit cell, but the final effect was inferior to the original one. Above all, the new refinement did not lead to the ordering of bromine atoms, and some displacement parameters became non-positive determined. Below 160K another phase transition takes place, this time to the triclinic P1 space group with two molecules in the unit cell (i.e., Z'=2). Both phase transitions are reversible; we were able to use the same crystal many times and observe the same diffraction patterns.

[1] M.Kwit et al., Pol.J.Chem. 77 (2003) 1669.

Keywords: phase transitions, intermolecular interactions, disorder

P08.06.37

Acta Cryst. (2008). A64, C429

Order parameters for phase transitions to structures with incommensurate modulations

Harold T Stokes, Branton J Campbell

Brigham Young University, Department of Physics, Physics Dept, Provo, Utah, 84602, USA, E-mail:stokesh@byu.edu

Given the k vector for a distortion in a parent crystalline structure, what resulting space-group symmetries are possible? We have answered this question (Stokes, Campbell & Hatch, 2007, Acta Cryst. A63, 365) for the case of one-dimensional incommensurate modulations where the resulting symmetries are described by (3+1)-dimensional superspace groups. Most recently, we have extended our group theoretical methods to the general case of any arbitrary set of N modulations where the symmetries are described by (3+N)-dimensional superspace groups.

Keywords: phase transitions in solids, incommensurate modulated structures, group theory

P08.06.38

Acta Cryst. (2008). A64, C429-430

Spontaneous strain in superconductors

Hideshi Fujishita¹, Takahiro Yamada¹, Hiroyuki Okamoto¹,

Seigo Shitara², Masatsune Kato², Yoji Koike²

¹Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan, ²Tohoku University, 6-6-05, Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan, E-mail:fujishit@kenroku.kanazawa-u.ac.jp

Recently, the change in the orthorhombicity of the high-temperature superconductor YBa₂Cu₃O_{6.5} at the superconducting transition temperature T_c could be clearly detected by accurate lattice parameter measurement [1]. The introduction of a new critical exponent was considered necessary for explaining the result. The very small anomaly of the lattice parameters of intermetallic superconductor MgB_2 was also clearly observed near T_c [2]. This anomaly was considered to be independent of the superconductivity onset. We could also clearly detect the change in the lattice parameter of the high-temperature superconductor $La_{1.85}Sr_{0.15}CuO_4$ at T_c [3]. For the first time, we showed that the change can be attributed to a spontaneous strain in the superconducting phase caused by the coupling between a superconducting order parameter and the strain. We indicated that the anomaly in MgB₂ can also be understood on the basis of the same coupling. Similar experiments on conventional superconductors are necessary to clarify whether such a phenomenon is common to all superconductors. We carried out powder X-ray diffraction experiments on Ba_{0.6}K_{0.4}BiO₃, which is a well-studied conventional superconductor with a simple cubic perovskite structure. The diffraction patterns were analyzed by the Rietveld