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It took Dan Shechtman more than two years to get his discovery of an Al–Mn

phase with icosahedral diffraction symmetry and sharp Bragg reflections

published. A paradigm shift had to take place before this novel ordering state of

matter – seemingly contradicting crystallographic laws – could be accepted.

Today, more than 25 years later, the existence of quasicrystals is beyond doubt.

However, not everything is settled yet. All the factors governing formation,

growth, stability and structure of quasicrystals are still not fully understood, nor

is it resolved whether their structures are strictly or only on average

quasiperiodic, and it is still an open question why only quasicrystals with 5-,

8-, 10- and 12-fold rotational symmetry have been experimentally observed so

far. These points will be addressed in this review article.

1. Introduction

‘Go away, Dany. These are twins and that’s not terribly inter-

esting.’ This was the first reaction of the eminent metallurgist

John W. Cahn (NIST) when first faced with Dan Shechtman’s

electron diffraction patterns of rapidly quenched Al–Mn (La

Brecque, 1987/8). John W. Cahn soon changed his mind and

co-authored the first publication on the discovery of quasi-

crystals (Shechtman et al., 1984). Therein the authors explicitly

state, demonstrating that they are fully familiar with the laws

of crystallography, that crystals ‘cannot and do not exhibit the

icosahedral point group symmetry’. Other early sceptics such

as double Nobel laureate Linus Pauling never accepted the

reality of quasiperiodic order: ‘Apparent icosahedral symmetry

is due to directed multiple twinning of cubic crystals’ (Pauling,

1985). However, the increasing quality of quasicrystals and

their diffraction data forced him to use continuously larger

unit cells for his twinning models, from a mere 1120 (Pauling,

1985) up to a remarkable 19400 atoms per unit cell (Pauling,

1989). Linus Pauling and his apologists simply refused to

accept the paradigm shift in crystallography transforming

three-dimensional non-crystallographic fivefold symmetry into

a higher-dimensional crystallographic one. Following custom,

we will say that a symmetry operation is crystallographic if it is

compatible with a three-dimensional lattice and non-crystal-

lographic otherwise.

The seeds for the understanding of quasicrystals were sown

several years before Shechtman’s discovery: by Roger Penrose

(1974), who found the famous pentagonal tiling, which was

popularized by Gardner (1977); by Alan Mackay (1982), who

performed optical diffraction experiments on one of the

Penrose tilings and obtained the first sharp diffraction pattern

with decagonal symmetry; by Nicolaas de Bruijn (1981), who

introduced the higher-dimensional approach for quasicrystals

by defining vertex selection rules (occupation domains) for the

Penrose tiling. Based on these and other works, Levine &

Steinhardt (1984) presented the outline of a first theory of

quasicrystals only six weeks after the publication of Dan

Shechtman’s historic paper.

However, if quasicrystals are not multiple twins, what are

they? Before answering this question, we should agree on the

definition of a crystal. Some years ago, the IUCr Ad Interim

Commission on Aperiodic Crystals published a working defi-

nition (International Union of Crystallography, 1992): ‘‘by

‘crystal’ we mean any solid having an essentially discrete

diffraction diagram, and by aperiodic crystal we mean any

crystal in which three-dimensional lattice periodicity can be

considered to be absent. As an extension, the latter term will

also include those crystals in which three-dimensional period-

icity is too weak to describe significant correlations in the

atomic configuration, but which can be properly described by

crystallographic methods developed for actual aperiodic crys-

tals.’’ In other words, the previous key feature of a crystal, its

three-dimensional lattice periodicity, was abandoned by this

definition. Instead, a pure point Fourier spectrum (reciprocal-

space image) was postulated as the necessary and sufficient

condition. Consequently, if the experimentally observed

quasicrystals are single-phase and single-domain materials,

they are aperiodic crystals. Recently, the discussion on the

crystal definition has been resumed because the term

‘essentially discrete diffraction diagram’ was found too vague

for a definition (see Steurer, 2007a; Lifshitz, 2007; Ben

Abraham, 2007; Baake & Frettlöh, 2007; Senechal, 2007;

Janssen, 2007; Zimmermann, 2007). For an in-depth intro-

duction into the field of aperiodic crystals, see Janssen et al.

(2007).

The wrong assumption that the icosahedral diffraction

symmetry of quasicrystals must be the result of multiple

twinning was based on two premises. The first was that sharp

Bragg reflections are the necessary and sufficient sign of lattice
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symmetry. The second was that a lattice cannot be invariant

under the icosahedral point group. The weak point in this

argument is the second premise, which is not generally true.

Almost 60 years ago, Carl Hermann demonstrated that

symmetry operations, which are non-crystallographic for

three-dimensional lattices, can become crystallographic in the

case of higher-dimensional lattices (Hermann, 1949). A six-

dimensional hypercubic lattice is invariant under the icosa-

hedral point group and so is its three-dimensional image which

results from proper projection. It is therefore obvious to check

whether the three-dimensional diffraction pattern of a quasi-

crystal can be considered as a projection of a hypothetical six-

dimensional one. Indeed, this is possible. According to Fourier

theory, a projection in Fourier (reciprocal) space corresponds

to a section in structure (direct) space. Consequently, the

structure of a quasicrystal can be interpreted as a three-

dimensional cut of a hypothetical six-dimensional hypercrystal

structure. This is nothing else but the higher-dimensional

approach, originally introduced for the description of incom-

mensurately modulated structures (de Wolff, 1974) and later

adapted for quasiperiodic structures (de Bruijn, 1981; Janssen,

1986, and references therein). The higher-dimensional

approach is illustrated in Fig. 1 on a one-dimensional example,

the quasiperiodic Fibonacci sequence.

Thus, quasicrystals are a subclass of the aperiodic crystals

with quasiperiodic structures. The term quasiperiodic was first

defined for special cases of almost periodic functions by

Harald Bohr (1925). A function is quasiperiodic if its Fourier

transform is only different from zero on a Fourier module of

finite rank (Axel & Gratias, 1995, and references therein).

Quasiperiodic structures can be divided into two main classes:

those with crystallographic point-group symmetry, to which

the long-known incommensurately modulated structures and

composite structures belong, and those with non-crystal-

lographic point-group symmetry, to which quasicrystal struc-

tures belong. Their common feature is that their diffraction

patterns, M� ¼ fIðHÞjH ¼
P

hia
�
i ; i ¼ 1; . . . ; n; hi 2 Zg, can

be indexed based on a set of n reciprocal basis vectors a�i , with

n > d, d being the dimension of physical space (usually d = 3).

In other words, the Fourier module corresponds to a Zmodule

of rank n in a space of dimension d < n. In the case of periodic

structures, d = n. To some extent, quasicrystal structures can

be described as incommensurately modulated structures

(Steurer, 2000a). This works well for one-dimensional quasi-

crystal structures as the Fibonacci sequence. However, since

this description is based on the existence of a periodic average

structure with one-to-one mapping of the vertices of the

quasiperiodic structure and lattice nodes of the periodic

average structure (Steurer & Haibach, 1999; Cervellino &

Steurer, 2002, and references therein), it is less adequate in the

case of quasiperiodic structures. The absence of one-to-one

mapping for structures with non-crystallographic symmetry

results from the fact that the point-group symmetry of the

periodic average structure is lower than that of the quasi-

crystal structure. Vice versa, it can be adequate to describe an

incommensurately modulated structure as a quasicrystal

structure if it shows scaling symmetry or results from a phase

transformation of a quasicrystal (Steurer, 2005).

In the following, we will use the terms quasicrystal and

quasicrystal structure for the class of aperiodic crystals and

quasiperiodic structures with non-crystallographic point-

group symmetry. This takes into account that the term

quasicrystal was coined by Levine & Steinhardt (1984) to

distinguish the newly discovered icosahedral Al–Mn phase

(Shechtman et al., 1984) from the long-known incommensu-

rately modulated structures.

2. Occurrence of quasicrystals

Quasicrystals have hitherto been found in more than a

hundred binary and ternary intermetallic systems. About half

of them are metastable and can only be obtained by rapid
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Figure 1
The one-dimensional Fibonacci sequence in the two-dimensional description. (a) The quasiperiodic sequence . . . LSLSLL . . . [L (S) means long (short)
interval] results from the cut of the two-dimensional hypercrystal structure by the physical space, V||. The two-dimensional lattice is decorated with line
segments (atomic surfaces or occupation domains) parallel to the perpendicular space, V?. (b) A one-dimensional periodic average structure can be
obtained by oblique projection of the two-dimensional structure along the grey stripes. (c) The one-dimensional diffraction pattern results from the
projection of the two-dimensional one onto physical space. The intensities, IðH?Þ, of the Bragg reflections decrease with the function ðsin H?=H?Þ2

drawn on the right. The reflections related to the periodic average structure are connected by the red line perpendicular to the projection direction in (b).



solidification techniques (such as splat cooling or melt spin-

ning). According to their diffraction symmetry, one distin-

guishes between N-gonal (octagonal, decagonal, dodecagonal)

and icosahedral quasicrystals. More than 20 stable decagonal

quasicrystals (DQCs) and more than 50 stable icosahedral

quasicrystals (IQCs) are known. The few octagonal quasi-

crystals discovered so far are metastable, the dodecagonal

ones are metastable or of very poor quality (for a compre-

hensive review, see Steurer, 2004a). Quasicrystals with other

rotational symmetries have not been observed so far although,

according to the projection model, N could be any integer

number theoretically. Why? For the hypothetical case of two-

dimensional structures, it has been shown that only quasi-

crystals based on quadratic irrationalities, aþ b
ffiffiffi
c
p

(a, b, c

rational numbers), should be energetically stable (Levitov,

1988). Accordingly, only QCs with 5-, 8-, 10- and 12-fold

symmetries would be allowed. However, as demonstrated by

Joshua Socolar (1990), at least weak matching rules exist for

all quasiperiodic tilings with N-fold

symmetry, where N is any integer

not divisible by four. Weak

matching rules are local rules

ensuring uniformly bound fluctua-

tions in perpendicular space.

Consequently, given proper local

interactions, quasicrystals with

symmetries other than 5-, 8, 10-

and 12-fold may be possible.

The predominance of IQCs is

not surprising because the icosa-

hedral coordination is the most

frequent type of atomic environ-

ment in complex intermetallic

phases (Daams & Villars, 2000)

and because quasiperiodic order

apparently allows the best packing

of clusters with icosahedral

symmetry. While there are no

regular or semi-regular three-dimensional polyhedra with

rotational symmetry higher than five, three-dimensional axial

polyhedra can have any rotational symmetry. Examples for

structures with such polyhedra are ternary borides and boro-

carbides with heptagonal-bipyramidal structure motifs (see

Steurer, 2007b). Consequently, it is not unlikely that heptag-

onal approximants or even quasicrystals will be prepared

some day. Stability regions of known DQCs and IQCs are

displayed in Fig. 2. Some of them, such as decagonal (d-) Al–

Fe–Ni, exist only in a narrow temperature and composition

window, while others, such as icosahedral (i-) Cd–Mg–Yb,

show large stability ranges.

Recently, a dendrimer-based liquid quasicrystal with 12-fold

symmetry was discovered (Zeng et al., 2004), showing that

quasiperiodicity is not restricted to intermetallic phases and

does not necessarily require electronic stabilization. Addi-

tionally, the quasiperiodic phase transforms into a cubic phase

upon heating, which indicates that the quasiperiodic state is
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Figure 2
Stability regions of (a) DQCs and (b), (c) IQCs. RE denotes the rare-earth metals Y, Dy, Ho, Er, Tm, Lu in the case of d-Zn–Mg–RE; Nd, Eu, Gd, Tb, Dy,
Ho, Er, Tm, Yb, Lu in the case of i-Cd–Mg–RE; La, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er, Yb in the case of i-Zn–Mg–RE. Note that only the A-rich parts
(50 � A � 100 at.%) of the concentration diagrams are shown in (a) and (c) (the figures are based on Grushko & Velikanova, 2004).

Table 1
Quantitative X-ray structure analyses of decagonal quasicrystals.

Nominal composition Nref† Npar† R† wR† Year Reference

Al65Co15Cu20 259 11 0.167 0.098 1990 Steurer & Kuo (1990)
Al70Co20Ni10 41 2 0.110 – 1990 Yamamoto et al. (1990)
Al70Co15Ni15 253 21 0.091 0.078 1993 Steurer et al. (1993)
Al70Co15Ni15 253 18 0.092 0.080 1995 Elcoro & Perez-Mato (1995)
Al72Co8Ni20 449 103 0.063 0.045 2001 Takakura, Yamamoto & Tsai (2001)
Al70.6Co6.7Ni22.7 2767 750 0.170 0.060 2002 Cervellino et al. (2002)
Al70.6Co6.7Ni22.7 1544 181 0.103 0.051 2004 Takakura et al. (2004)
Al72Co8Ni20 1873 181 0.081 0.052 2004 Takakura et al. (2004)
Al70.6Co6.7Ni22.7 1544 106 0.159 0.086 2004 Mihalkovic et al. (2004)
Al78Mn22 233 18 0.305 0.144 1991 Steurer (1991)
Al70.5Mn16.5Pd13 476 33 0.249 0.214 1994 Steurer et al. (1994)
Al70Mn17Pd13 1311 72 0.270 0.186 1995 Yamamoto et al. (1995)
Al70.5Mn16.5Pd13 476 97 0.084 0.067 1997 Mihalkovic & Mrafko (1997)
Al70Mn17Pd13 1428 121 0.234 0.129 1997 Weber & Yamamoto (1997)
Al70Mn17Pd13 1428 217 0.167 0.119 1998 Weber & Yamamoto (1998)
Al75Os10Pd15 1738 14 – 0.140 2002 Cervellino et al. (2002)

† Nref: number of reflections; Npar: number of refined parameters; (w)R: (weighted) reliability factor.



energetically favoured at low temperature. A model

explaining the particular stability of dodecagonal soft quasi-

crystals has been suggested by Lifshitz & Diamant (2007).

They impose two requirements for quasiperiodicity: two

different natural length scales and the existence of effective

three-body interactions.

3. Where are the atoms?

This question, which is also part of the title of a paper by Per

Bak (1986), is still not fully answered in spite of the many

structure analyses that have been performed during the past

two decades (see Tables 1 and 2). Why is quasicrystal structure

analysis that demanding, such a ‘monumental job’ as Per Bak

foresaw it? And what exactly do we want to know about a

quasicrystal structure (for a critical discussion, see Steurer,

2004b)?

3.1. Structure analysis

The goal of a standard structure analysis is the determina-

tion of the atomic parameters for all atoms located in the

asymmetric unit, in other words, the determination of the

short-range order. The long-range order, i.e. the lattice

periodicity, is taken for granted. The ultimate goal of quasi-

crystal structure analysis is to determine both short- and long-

range order. This is equivalent to determining the kind of

quasiperiodic tiling (quasilattice) underlying the quasicrystal

structure and the way the unit tiles (unit cells of the tiling) are

decorated by atoms. While the

lattice underlying a periodic struc-

ture consists of translated copies of a

single unit cell, a quasilattice

consists of copies of at least two

different unit tiles. Furthermore,

while we have to choose between

only 14 different three-dimensional

point lattices (Bravais lattices) in the

case of periodic crystal structures,

the number of different three-

dimensional quasiperiodic tilings

(quasilattices) is infinite. The

problem of determining the quasi-

lattice cannot be generally sepa-

rated from determining the

quasicrystal structure. Furthermore,

the atomic decoration of the tiles

may not be uniform all over the

tiling.

The following fundamental ques-

tions are to be answered by quasi-

crystal structure analysis.

(i) Is the structure of quasicrystals

quasiperiodic in the strict sense with

just phononic and phasonic random

fluctuations? Is it still quasiperiodic

at T = 0 K, i.e. does a quasiperiodic

ground state of matter exist? Are there a finite number of well

defined clusters decorating a quasilattice, which force quasi-

periodicity via overlap rules, perhaps assisted by a kind of

Hume–Rothery mechanism?

(ii) Does, alternatively, the random-tiling model apply

(Gähler & Jeong, 1995; Joseph & Baake, 1996; Elser, 1996;

Nienhuis, 1998; Ebinger et al., 1998; Gummelt, 2006; Henley,

2006)? A random tiling is probable in the case that the

structure formation is governed by short-range atomic inter-

actions only. In this case, the ground state would be periodic.

All quantitative structure analyses performed so far have

been based on the presumption that the sharp reflections

observed by diffraction methods are Bragg reflections. This

implies that the strict random-tiling model (Tang, 1990;

Strandburg, 1991; Henley et al., 2000) is ruled out. A few

structure determinations have been performed on three-

dimensional tiling models, whereas most structure analyses

employed the higher-dimensional approach. The important

fundamental question on the degree of order/disorder was

rarely studied experimentally. When diffuse scattering was

investigated, it was usually done only beneath and in the direct

surrounding of Bragg reflections (e.g. de Boissieu & Fran-

coual, 2005; de Boissieu et al., 2005) to get a measure for

phasonic disorder, but rarely between Bragg reflections for

other kinds of disorder (Kobas et al., 2005a,b).

Unfortunately, the most powerful methods developed and

used for the solution of periodic structures in the last 50 years,

i.e. statistical direct methods, cannot be applied directly to

quasicrystal structures, despite a few not very successful
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Table 2
Quantitative X-ray and neutron structure analyses of icosahedral quasicrystals.

Nominal composition Nref† Npar† R† wR† Year Reference

Al73Mn21Si6 17 1 0.128 0.257 1988 Cahn et al. (1988)
Al73Mn21Si6 17 2 0.089 – 1994 Mihalkovic & Mrafko (1994)
Al73Mn21Si6 32‡ 2 0.160 – 1994 Mihalkovic & Mrafko (1994)
Al6CuLi3 37 6 0.070 – 1988 Elswijk et al. (1988)
Al6CuLi3 37 12 0.070 0.050 1991 van Smaalen et al. (1991)
Al57Cu11Li32 56 6 0.080 0.170 1991 de Boissieu et al. (1991)
Al57Cu11Li32 40‡ 6 0.080 0.140 1991 de Boissieu et al. (1991)
Al57Cu11Li32 56 7 0.076 – 1992 Yamamoto (1992)
Al57Cu11Li32 40‡ 7 0.085 - 1992 Yamamoto (1992)
Al57Cu11Li32 56 19 0.072 0.067 1994 Elcoro & Perez-Mato (1994)
Al57Cu11Li32 40‡ 19 0.068 0.068 1994 Elcoro & Perez-Mato (1994)
Al63Cu25Fe12 72‡ – 0.206 – 1991 Cornier-Quiquandon et al. (1991)
Al62Cu25.5Fe12.5 131 – 0.051 0.038 1995 Katz & Gratias (1995)
Al62Cu25Fe13 935 – 0.11 – 2004 Yamamoto, Takakura & Tsai (2004)
Al62Cu25Ru13 1080 – 0.88 – 2004 Yamamoto, Takakura & Tsai (2004)
Al68.7Mn9.6Pd21.7 360 – 0.110 – 1992 Boudard et al. (1992)
Al70Mn9Pd21 192‡ – 0.200 – 1992 Boudard et al. (1992)
Al70Mn10Pd20 1137 – 0.150 0.260 1994 Yamamoto et al. (1994)
Al70Mn10Pd20 1137 51 0.200 0.106 1995 Yamamoto et al. (1995)
Al71Mn8Pd21 377 91 0.054 0.053 2002 Yamamoto et al. (2002)
Al70.5Mn8.5Pd21 200§ – – – 2003 Fang et al. (2003)
Al-Mn-Pd 493 – 0.049 0.055 2003 Yamamoto et al. (2003)
Al73Re9Pd18 1312 – 0.076 0.107 2004 Yamamoto, Takakura, Ozeki et al. (2004)
Ti41.5Zr41.5Ni17 15+23} 9 0.059 0.051 2003 Hennig et al. (2003)
Zn60Mg31Ho9 326 – 0.160 – 2001 Takakura, Shiono et al. (2001)
Cd5.7Yb 5024 251 0.094 0.056 2007 Takakura et al. (2007)

† Nref: number of reflections; Npar: number of refined parameters; (w)R: (weighted) reliability factor. ‡ Neutron scattering
study, otherwise X-ray diffraction analysis. § Refinement based on CBED data. } Combined X-ray and neutron powder
diffraction data refinement



attempts (Fu et al., 1993). Higher-dimensional Patterson

methods (Steurer, 1987, 1989) work quite well, especially in

combination with the symmetry-minimum function and

image-seeking functions (Estermann et al., 2000). Maximum-

entropy methods may be used in the final stages of phase

determination and particularly for the improvement of elec-

tron-density maps (Haibach et al., 2000, and references

therein). Techniques that are especially efficient in higher

dimensions are the local-density-elimination (LDE) method

(Takakura et al., 2006; Yamamoto, Takakura, Ozeki et al.,

2004; Yamamoto, Takakura & Tsai 2004) and the charge-

flipping method (Katrych et al., 2007, and references therein).

The three-dimensional tiling-decoration methods rely on

clusters derived from the structure of approximants.

Approximants are structurally closely related to quasicrystals.

In the higher-dimensional description, they result from

rational cuts of the n-dimensional hypercrystals and are called

rational approximants. Together with energy-minimization

techniques, three-dimensional tiling-decoration methods lead

to quite reliable results (Mihalkovic & Mrafko, 1994, 1997;

Mihalkovic & Henley, 2004). Their direct link with physical

parameters makes these results to some extent superior to

those of higher-dimensional structure refinements, which may

owe their low reliability factors partly to unphysical fit par-

ameters. For a general discussion of quasicrystal structure

analysis, see Steurer (2004b) and Haibach et al. (2000).

Tables 1 and 2 list all structure analyses of quasicrystals

hitherto published, which can be considered quantitative for

the state of the art of their time. Unfortunately, most publi-

cations do not even obey the most basic rules regarding the

documentation of crystallographic information. Frequently,

essential data are missing, such as chemical composition,

preparation conditions, data-collection parameters, n-dimen-

sional space group, metrics, number of refined parameters,

refined parameters with their standard deviations, reliability

factors and their definition. A detailed statistical structure-

factor analysis, Fobs=Fcalc, has hardly ever been performed,

although this would be very important due to the large frac-

tion of weak reflections in quasicrystal data sets, as weak

reflections carry the information on the deviations of the

idealized structure models from real atomic surfaces. This

information is crucial if one wants to get indications for the

stabilizing factors (chemical/substitutional and/or displacive

disorder, distortions of coordination polyhedra, random

phason fluctuations, . . . ) from the character of structural

ordering. The fact that the strict rules applied for publication

of standard structure analyses, which guarantee high-quality

structural data, have not been adopted and adapted for

quasicrystal structure determination may have been a conse-

quence of the only marginal involvement of experienced

structural crystallographers in this challenging field.

Anyway, with increasing size and quality of diffraction data

sets, the quality of refined structure models could be improved

considerably. The most recent ones are approaching the

quality of standard structure determinations of complex

intermetallic compounds. Consequently, together with the

information provided by electron-microscopic methods, we

now have quite a clear picture of the average local and global

order in several quasicrystals. However, much less is known

about the real structure of quasicrystals, i.e. the local devia-

tions from the average structure. The study of diffuse scat-

tering will help to clarify this point.

Umweganregung (multiple diffraction) has been considered

a serious problem for structure analysis of quasicrystals from

the very beginning (Mackay & Kramer, 1985). Theoretically,

Bragg reflections of icosahedral quasicrystals densely fill the

reciprocal space. Thus, in a diffraction experiment, infinitely

many Bragg reflections would be excited simultaneously and

kinematical theory would not apply any more. The existence

of Umweganregung in quasicrystals has been experimentally

demonstrated by Eisenhower & Colella (1998). In a realistic

data collection set-up, the number of reflections being close to

the Ewald sphere at the same time is quite limited (Fig. 3).

However, although Umweganregung may occur frequently, its

influence on the structure analysis may be negligible owing to

the small structure factors of the reflections involved and the

usual dynamic range (105–108) of a diffraction experiment.

However, future high-quality data collections should be

carried out with corrections for Umweganregung.

3.2. Structure models

DQCs can be structurally classified based on the number of

atomic layers per translation period along the tenfold axis.

This is only a geometrical ordering principle, as DQCs are not

Acta Cryst. (2008). A64, 1–11 Walter Steurer and Sofia Deloudi � Fascinating quasicrystals 5

feature articles

Figure 3
Typical single-frame diffraction image (oscillation angle 0.1� around the
horizontal axis, Pilatus 6 M detector, � = 0.76507 Å, fluorescence filter,
crystal detector distance 300 mm, beam divergence horizontally 0.0258�,
vertically 0.0034�, exposure time 0.45 s, SLS synchrotron radiation) of
icosahedral Al–Cu–Fe (from Weber et al., 2007). A significant fraction of
the reflections shown here may have been excited simultaneously leading
to Umweganregung.



layer compounds in the crystal-chemical meaning. They can be

better described as packing of overlapping clusters. All stable

DQCs found so far (more than 20) (see Steurer, 2004a, and

references therein; Katrych et al., 2007) can be assigned to the

following three classes.

(i) Two-layer periodicity (sometimes with twofold super-

structure leading to a four-layer period).

d-Al–Co–Ni type: Al–Cu–Me (Me = Co, Rh, Ir), Al–Ni–Me

(Me = Co, Fe, Rh, Ru).

d-Zn–Mg–Dy type: Zn–Mg–RE (RE = Y, Dy, Ho, Er, Tm,

Lu).

(ii) Six-layer periodicity.

d-Al–Mn–Pd type: Al–Mn–Pd, Al–Mn–Fe–Ge, Ga–Co–Cu,

Ga–Cu–Fe–Si, Ga–V–Ni–Si.

(iii) Eight-layer periodicity.

d-Al–Os–Pd type: Al–Ni–Ru, Al–Pd–Me (Me = Fe, Ru,

Os), Al–Ir–Os.

Fundamental clusters, which build the structures of quasi-

crystals, as well as those of their rational approximants, are

often used for the classification of IQCs. There are three main

types, the Mackay cluster (MC) (Mackay, 1962; Kuo, 2002)

(Fig. 4), the Bergman cluster (BC) (Bergman et al., 1957) (Fig.

5) and the Tsai cluster (TC) (Palenzona, 1971; Maezawa et al.,

2004) (Fig. 6).

One should keep in mind though that it is not always

possible to decide unambiguously whether a quasicrystal

structure is mainly built from one or other cluster type. For

instance, a detailed analysis of the structure of i-Al–Mn–Pd

demonstrated that it may be equally well covered by MCs

(77.1%) and by BCs (72.8%), respectively (Loreto et al., 2003).

A similar statistic was found for i-Al–Cu–Fe (Gratias et al.,

2001). The physical nature of these clusters, their stability and

mechanical properties, is still controversially discussed (see

Steurer, 2006; Henley, 2006; Henley et al., 2006; Ponson et al.,

2006, and references therein).

There are typical ratios, ar= �dd, of the quasilattice constant, ar

(Elser, 1985), to the average interatomic distance, �dd, for

quasicrystals based on MCs (1.65–1.75), TCs (�1.75) and BCs

(�2.0), respectively (Chen et al., 1987; Guo et al., 2002).

Typical values for the optimum electron concentrations (i.e.

valence electrons per atom) amount to 1.7–1.9 for the MC

type, 2.0–2.1 for the TC type, and 2.0–2.2 for the BC-type QCs

(Trambly de Laissadière et al., 2005).

The structures of IQCs can be approximately related to

cluster-decorated three-dimensional Penrose tilings with edge

lengths �3ar of the rhombohedra, � being the golden mean,

� ¼ 2 cosð�=5Þ ¼ 1:618. The quasilattice constant and the

lattice parameter of the hypercubic lattice, a, are related by

ar ¼ a
ffiffiffi
2
p
=2. The prototype structures and representatives,

based on six-dimensional structure analyses (Yamamoto &

Takakura, 2004) and the three cluster types, respectively, are

given below.

(i) i-Al–Mn–Pd type: a = 9.14 Å, ar ¼ �
3a=2, Fm�33�55.

Three-dimensional Penrose tiling with edge length ar

decorated by pseudo-MCs.

Al–Pd–Me (Me = Mn, Re, Ru, Os), Al–Cu–Me (Me = Fe,

Ru, Os), Ti–Zr–Ni.

(ii) i-Zn–Mg–Ho type: a = 10.28 Å, ar ¼ �
3a=2, Fm�33�55.

Three-dimensional Penrose tiling with edge length ar

decorated by pseudo-BCs.

Mg–Zn–RE (RE = Y, Nd, Gd, Ho, Dy, La, Pr, Tb, Ce),

Zn–Mg–Hf, Zn–Mg–Zr and Al–Cu–Li, Mg–Ga–Zn, Mg–Al–

M (M = Rh, Pd, Pt) with symmetry Pm�33�55 (i.e. these are

disordered variants of the F-type).
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Figure 6
Shells of the 66 atom Tsai cluster building cI168-Cd6Yb (Takakura,
Shiono et al., 2001). All shells are centred at the origin. (a) Orientationally
disordered Cd tetrahedron. (b) Cd pentagondodecahedron. The
pentagons are capped by Yb forming an icosahedron (c). (d) Cd
icosidodecahedron.

Figure 5
Shells of the 104 atom Samson cluster building the approximant cI160-R-
Al5CuLi3 (Audier et al., 1988). All shells are centred at the origin. Shells
(a)–(c) form the 44 atom Bergman cluster. (a) Al/Cu icosahedron. (b) Li
pentagondodecahedron. Its pentagons are capped by Al/Cu atoms
forming an icosahedron with diameter similar to the dodecahedron (c).
These two shells together form a triacontahedron. (d) Truncated
icosahedron of Al/Cu atoms. (e) Li triacontahedron with Li atoms
capping the hexagonal faces of the truncated icosahedron.

Figure 4
Shells of the double-Mackay cluster (Sugiyama et al., 1998) building the
approximant cP138-�-Al–Mn–Si. The shells (a)–(e) are centred at the
origin of the unit cell and shells (a)–(c) in the body centre as well. Shells
(a)–(c) form the 54 atom Mackay cluster. (a) Al/Si icosahedron. If the
icosahedral symmetry is broken by this innermost shell, the pseudo-
Mackay cluster is obtained (Boudard et al., 1992). (b) Al icosidodeca-
hedron. Its pentagons are capped by Mn atoms forming an icosahedron
with diameter similar to the icosidodecahedron (c). (d) Complex Al shell.
(e) Icosahedral Al/Si shell.



(iii) i-Cd–Yb type: a = 5.689 Å, ar ¼ �
3a=2, Pm�33�55

Three-dimensional Penrose tiling with edge length ar

decorated by TCs with disordered first shell.

Cd–Me (Me = Ca, Yb), Cd–Mg–Ca, Cd–Mg–RE (RE = Y,

Nd, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), Zn–Me–Sc (Me =

Ag, Au, Co, Cu, Fe, Mg, Mn, Ni, Pd, Pt), Cu–Ga–Mg–Sc,

Zn–Mg–Ti, Ag–In–(Mg–)Me (Me = Ca, Yb). Zn can be

isoelectronically replaced by Cu–Ga in the case of i-Zn–Mg–

Sc and Cd by Ag–In in the cases of i-Cd–Ca and i-Cd–Yb.

Two examples of idealized quasicrystal structure models,

d-Al–Co–Ni (Deloudi & Steurer, 2007) and i-Al–Cu–Fe

(Quiquandon & Gratias, 2006), together with their periodic

average structures, are shown in Figs. 7 and 8. The periodic

average structure can be obtained by oblique projection of the

hypercrystal structure onto the physical space (cf. Fig. 1). It is

congruent to the infinite three-dimensional quasiperiodic

structure modulo the unit cell of the periodic average struc-

ture. The periodic average structure of the decagonal phase is

related to the B2 phase (CsCl-type) (Steurer, 2000b), and that

of the icosahedral phase to f.c.c. Al (Steurer & Haibach, 1999).
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Figure 7
(a) 100 � 100 Å section of the structure of d-Al–Co–Ni based on a model
of Deloudi & Steurer (2007) and (b) one unit cell of its monoclinic
periodic average structure, (cf. Beraha et al., 2001). Both figures show
projections along the tenfold axis. The chemical decoration of the atomic
surfaces is still visible after the oblique projection (Al grey, Co/Ni red).

Figure 8
(a) Section of the structure of i-Al–Cu–Fe based on a model by
Quiquandon & Gratias (2006) and (b) a part (for the sake of clarity) of
the unit cell of its f.c.c. periodic average structure, which is of the NaCl
type (cf. Steurer & Haibach, 1999). The chemical decoration of the atomic
surfaces is still visible after the oblique projection (Al grey, Cu red, Fe
green).



The periodic average structure is a measure for the devia-

tion of the quasiperiodic structure from a periodic reference

lattice. In the case of the one-dimensional Fibonacci sequence,

a quasiperiodic structure with crystallographic symmetry,

there exists a one-to-one mapping of its vertices to the refer-

ence lattice. Consequently, the deviation is purely displacive.

For quasiperiodic structures with non-crystallographic

symmetry, the deviation is predominantly displacive and

partly substitutional (occupied/non-occupied).

Strong Bragg reflections of quasicrystals define pseudo-

Brillouin zones (Jones zones). Subsets of these reflections

define relevant periodic average structures (Cervellino &

Steurer, 2002). This relationship has been used for the

prediction of the pseudo-band-gaps of phononic quasicrystals

(Sutter-Widmer et al., 2007). The Borrmann effect, i.e.

anomalous transmission of X-rays, has been shown to exist in

quasicrystals despite the lack of periodicity (Härtwig et al.,

2001). This can be easily explained based on the concept of the

periodic average structure of quasicrystals.

4. Surfaces and interfaces

The study of quasicrystal surfaces started in 1990 with a STM

investigation of the tenfold surface of d-Al–Co–Cu (Kortan et

al., 1990). Since then, hundreds of experimental (STM, AFM,

LEED, XPS, . . . ) and theoretical (molecular dynamics, Monte

Carlo, ab initio calculations, . . . ) surface studies have been

performed. These studies have contributed to our under-

standing of the surface structures of quasicrystals, whether

they reconstruct, and how they terminate (Papadopolos &

Kasner, 2005, and references therein). Additionally, since

quasicrystal surfaces usually do not reconstruct, sequences of

terrace structures can also be used for checking models of the

bulk structure (Papadopolos et al., 2002, and references

therein).

Of particular interest have been studies of the structures

adopted by atoms (Xe, Na, K, Al, Si, Co, Cu, Sn, Ag, Au, Pb,

Bi, . . . ) or molecules (C60) deposited on surfaces with fivefold

symmetry in (sub)monolayer concentration. In almost all

cases, fivefold twinned periodic domain structures are formed.

However, in the case of 3–30 monolayers of Co on d-Al–Co–

Ni for instance, domains built by quasiperiodically spaced

rows of periodically arranged atoms have been observed

(Smerdon et al., 2006). For a review on all aspects of quasi-

crystal surface science, see the special issue edited by Pat Thiel

(2004).

5. Quasiperiodicity – origin of strange properties?

In the first years after Shechtman’s discovery, mathematicians,

physicists and materials scientists jumped into quasicrystal

research with both feet. Contrary to these non-crystal-

lographers, crystallographers preferred to stay outside,

perhaps because they did not feel responsible for structures

with non-crystallographic symmetry. Mathematicians were

particularly interested in tilings and their spectral properties.

Their studies were not only important for the research in

quasicrystals, they also had impact on mathematics itself in the

areas of discrete geometry, harmonic analysis, group theory

and ergodic theory (Lagarias, 2000), and finally promoted the

understanding of ornamental art (see Lu & Steinhardt, 2007,

and references therein). Physicists and materials scientists

were excited by the special properties which they envisioned

to possibly result from quasiperiodicity. Since the fundamental

difference between crystals and quasicrystals is in the char-

acter of their long-range order, physical properties sensitive to

long-range order should be affected the most.

Indeed, particularly electronic and thermal transport

properties were found to behave differently from normal

metals. At low temperatures, quasicrystals even seemed to

approach a metal–insulator transition (Pierce et al., 1993). This

finding generated intense research in the field (for a review see

Trambly de Laissadière et al., 2005). Unfortunately, it was

recently shown that a significant contribution to the low

conductivity of the quasicrystal with the largest effect, poly-

crystalline i-Al–Pd–Re, was of extrinsic origin (oxide layers)

(Dolinšek et al., 2006). Particularly in the beginning of the

hype on quasicrystals, measurements were frequently

performed on low-quality and/or poorly characterized samples

in order to be the first providing experimental evidence for the

strange properties expected from or predicted for quasicrys-

tals. This attitude has been responsible for many contradictory

results.

However, there is still clear evidence for a significant

decrease in electronic and thermal conductivity of quasicrys-

tals with decreasing temperature. DQCs, combining both

periodicity and quasiperiodicity in one and the same sample,

are good model systems for separating the influence of

chemical composition from that of quasiperiodicity. Indeed,

there is a strong anisotropy in electronic and thermal

conductivity of DQCs. For instance, measurements on

d-Al74Co16Ni10 between 373 and 873 K show a slight increase

in thermal diffusivity (factor 2) in the quasiperiodic plane,

while it remains constant in the periodic direction (Barrow et

al., 2003). The absolute values at 373 K in the periodic direc-

tion are by about one order of magnitude smaller than those of

pure aluminium, in the quasiperiodic plane by two orders of

magnitude. The authors conclude the validity of a Drude free-

electron model in this temperature range, with a longer carrier

mean-free-path time along the periodic direction. Generally, it

has been shown that quasicrystals follow Wiedemann–Franz’s

law of the mutual relationship between thermal and electrical

conductivity (Macia, 2002).

However, already small-unit-cell approximant DQCs such

as Al13Fe4 (a = 15.489, b = 8.083, c = 12.476 Å, � = 107.72�)

show a large anisotropy (factor of 5 at 4.2 and 273 K) in

electric resistivity as well as an inverse Matthiessen rule along

the quasiperiodic plane (Volkov & Poon, 1995). This indicates

that the anisotropy in the electronic resistivity is mainly of

local origin due to a highly anisotropic electronic structure

(Krajci & Hafner, 1998) and quasiperiodic long-range order is

not the crucial factor.
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6. Growth and stability of QCs

It is generally agreed that electronic stabilization according

to the Hume–Rothery mechanism plays a decisive role for

Al-based quasicrystals. Indeed, many quasicrystals have been

found by a systematic search for compounds with a particular

valence-electron concentration for a given range of atomic

size ratios and electronegativities of the elements involved

(Tsai, 2003). The hybridization of low-energy empty d states

with a wide sp band can significantly contribute to the stability

as well. In the absence of a pseudogap at the Fermi energy, as

observed for Cd-based quasicrystals, this mechanism may even

be the dominating one (Ishii & Fujiwara, 2001).

It is difficult to understand how a complex large-unit-cell

intermetallic phase forms, even if it is periodic. How does the

thousandth atom find its site in a huge unit cell? One factor is

certainly the chemical composition (chemical potential),

which should locally not differ too much from the global

average. Another factor is the formation of structural subunits

as fundamental building elements. These may just be small

coordination polyhedra such as Frank–Kasper polyhedra

representing the geometrically and energetically best local

atomic arrangements for a given chemical composition. These

may also be large clusters consisting of many shells, which are

probably stabilized by a particular electronic structure [cf.

Wade’s rule (Mingos, 1984, and references therein)]. The size

of the unit cell is thus determined by the optimal packing of

these clusters, which usually requires some glue atoms in

addition. Gaps or pseudogaps in the electronic density of

states at the Fermi energy can also play a role for the optimum

unit-cell size. For a discussion of cluster properties in quasi-

crystals, see Steurer (2006), Henley (2006) and Henley et al.

(2006).

It is possible that the formation of cluster-based quasicrystal

structures is even simpler than that of non-cluster-based large-

unit-cell complex intermetallics. It has been demonstrated by

molecular dynamics that, in simple two-dimensional mono-

atomic models, decagonal and dodecagonal random tiling

structures form if a proper double-well potential is used

(Engel & Trebin, 2007). This means that clusters, forming

quasiperiodic structures, do not necessarily need to differ from

their environment in terms of chemical bonding.

7. Outlook

Strange structures may have strange properties that may have

interesting applications. This dream has been one of the main

driving forces for the intense study of quasicrystals in the early

years after their discovery, but it faded away. Although there is

an interesting book available, Useful Quasicrystals (Dubois,

2005), quasicrystals have hitherto found only niche applica-

tions. Examples are special steels, hardened by quasicrystal-

line precipitates, or coatings for frying pans. Perhaps more

potential for applications is shown by photonic and phononic

quasicrystals (for a review, see Steurer & Sutter-Widmer,

2007). The combination of pure point Fourier spectra with

high rotational symmetry allows for wide omnidirectional

band gaps even for low-index-contrast heterostructures. The

number of publications in this field is rapidly growing and

already represents a significant fraction of all new papers on

quasicrystals (small red bars in the histogram depicted in

Fig. 9).

We do not know when the next class of non-periodic

exciting crystal structures will be discovered, or if there will be

such a discovery at all. If nature does not have anything of this

kind to offer, man-made artificial structures with complex

order beyond the quasiperiodic one (Axel & Gratias, 1995), on

either the nano- or the mesoscale, may step in.

We thank the Swiss National Science Foundation for

supporting part of the work discussed in this review article.
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