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From the beginning of the past century, halogenated hydro-
carbons have been extensively applied in industry and
agriculture. Decades after the start of their widespread use,
evidence started to accumulate that some of these xenobiotic
halogenated compounds are persistent and highly toxic, stimu-
lating investigations how they could be degraded. It appeared
that specific bacterial enzymes exist, dehalogenases, which can
degrade halogenated compounds. These enzymes make use of
a variety of distinctly different catalytic mechanisms to cleave
carbon-halogen bonds.

X-ray structures of haloalkane dehalogenases, haloacid dehalo-
genases, and 4-chlorobenzoyl-CoA dehalogenase demon-
strated the power of substitution mechanisms that proceed via
a covalent aspartyl intermediate.

Structural characterizations of haloalcohol dehalogenases
revealed the details of another elegant catalytic strategy,
exploiting the presence of a vicinal hydroxyl group in the
substrate.

Finally, 3-chloroacrylic acid dehalogenases function in the
bacterial degradation of 1,3-dichloropropene, a compound used
in agriculture to kill plant-parasitic nematodes. Crystal struc-
tures of these enzymes showed that they function as hydratases
to remove the halogen atom. Glu-52 is positioned to function
as the water-activating base for the addition of a hydroxyl group
to the C-3 atom of 3-chloroacrylate, while the nearby Pro-1 is
positioned to provide a proton to C-2. Two arginine residues,
oArg-8 and alArg-11, interact with the C-1 carboxylate groups,
thereby polarizing the o,B-unsaturated acids. The resulting
product is an unstable halohydrin, 3-chloro-3-hydroxypro-
panoate, which decomposes into the products malonate semial-
dehyde and HCL.
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Hydrolysis of the glycosidic bond is one of the most critical
processes in nature and has considerable technical importance.
Glycoside hydrolases have been shown to be extremely profi-
cient at the acceleration of this reaction by increasing rates by
a factor of 107, this makes them among the most effective of
enzymes. This effectiveness is reflected in the tight binding of
the oxocarbenium transition state. Determination of the confor-
mation of the substrate whilst in this transition state is of impor-
tance not only for improved understanding of the action of
these enzymes but also for the design of specific and powerful
enzyme inhibitors. Members of glycoside hydrolase family 26
are predominately 31-4 mannanases, however a Clostridium
thermocellum lichenase shows different activity. We present
here the determination of the crystal structure of this enzyme
in complex with various inhibitors which reveal its conforma-
tional itinerary and demonstrate the differences between family
26 enzymes active on glucose rather than mannose configured
substrates. In particular we have trapped the covalent inter-
mediate by use of a difluoro-derived compound. This work
allows us to draw conclusions as to the structure of the transition
states along the reaction pathway and the mechanism of
substrate recognition.
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