Acta Crystallographica Section A Foundations of Crystallography ISSN 0108-7673

addenda and errata

Normal-mode analysis of the structures of perovskites with tilted octahedra. Erratum

C. N. W. Darlington

School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, England. Correspondence e-mail: c.n.w.darlington@bham.ac.uk

There is an error in the mode assignment for hettotype 9, $[a^{-}b^{+}a^{-}]$, discussed in the paper by Darlington [Acta Cryst. (2002). A58, 66-71], which has been pointed out by Dr Kevin Knight, Rutherford Appleton Laboratory, Didcot, Oxon, England. In this paper, a mode involving displacements of the anions of hettotype 9 was labelled $\left[\left(\frac{1}{2}, 0, \frac{1}{2}\right), M_1\right]$ rather than $[(\frac{1}{2}, 0, \frac{1}{2}), M_2]$. Both modes involve *plus-like* distortion of the octahedra. In the corrected Tables 1-4 shown below, this mode, which is only found in hettotype 9, has been labelled K_2 rather than H_2 . Therefore, there are not seven but eight normal modes of the cubic phase required to describe the displacements found in the nine hettotypes considered. The weights of K_2 in all the materials examined in the original paper with the structure of hettotype 9 [labelled $W(H_1)$ in the original Table 4] are correct, unaltered by the change in the labelling of the mode. It should be noted that $\left[\left(\frac{1}{2}, 0, \frac{1}{2}\right), M_2\right]$ is a longitudinal mode - the seven other modes are all transverse. The weights of K_2 are not significantly different from zero in the 15 structures examined.

References

- Bochu, B., Deschizeaux, N. N., Joubert, J. C., Collomb, A., Chenevas, J. & Marezio, M. (1979). J. Solid State Chem. 29, 291–298.
- Chenevas, J., Joubert, J. C., Marezio, M. & Bochu, B. (1975). J. Solid State Chem. 14, 25–32.
- Darlington, C. N. W. & Knight, K. S. (1999). Acta Cryst. B55, 24-30.
- Howard, C. J. & Kennedy, B. J. (1999). J. Phys. Condens. Matter, 11, 3229-3236.
- Kennedy, B. J., Howard, C. J. & Chakoumakos, B. C. (1999). Phys. Rev. B, 59, 4023–4027.
- Knight, K. S. (1995). Solid State Ionics, 75, 109-118.
- Leinenweber, K. & Parise, J. (1995). J. Solid State Chem. 114, 277-281.
- Marezio, M., Remeika, J. P. & Dernier, P. D. (1970). Acta Cryst. B26, 2008–2022.
- Unoki, H. & Sakudo, T. (1967). J. Phys. Soc. Jpn, 23, 546-552.
- Wiseman, P. J. & Dickens, P. (1976). J. Solid State Chem. 17, 91-100.

lab	e 1	
The	nine	hettotypes.

Number	+/- notation	$[M_i R_j]$	Multiplicity	True unit cell	Space group
1 2 3 4 5 6 7 8	$a^{0}a^{0}c^{-}$ $a^{-}b^{0}a^{-}$ $a^{-}a^{-}a^{-}$ $a^{0}a^{0}c^{+}$ $a^{+}a^{+}c^{0}$ $a^{+}a^{+}a^{+}$ $a^{0}b^{-}c^{+}$ $a^{+}a^{+}c^{-}$	R_{3} $R_{1} = R_{3}$ $R_{1} = R_{2} = R_{3}$ M_{3} $M_{1} = M_{2}$ $M_{1} = M_{2} = M_{3}$ R_{2}, M_{3} $M_{1} = M_{2}, R_{3}$	$2 \times 2 \times 2$ $2 \times 2 \times 2$	$\begin{array}{c} 2^{1/2} \times 2^{1/2} \times 2 \\ 2^{1/2} \times 2 \times 2^{1/2} \\ 2^{1/2} \times 2^{1/2} \times 2^{1/2} \\ 2^{1/2} \times 2^{1/2} \times 1 \\ 2 \times 2 \times 2 \\ 2 \times 2 \times 2 \\ 2 \times 2 \times 2 \\ 2 \times 2 \times$	I4/mcm (140) Imma (74) R3c (167) P4/mbm (127) I4/mmm (139) Im3 (204) Cmcm (63) P4 ₂ /mm (137)
9	$a^{-}b^{+}a^{-}$	$R_1 = R_3, M_2$	$2 \times 2 \times 2$	$2^{1/2} \times 2 \times 2^{1/2}$	Pnma (62)

Table 2

Atomic displacements in the seven normal modes, the symbol used in the construction of the Landau potential, and character of each mode.

Normal mode	Displacement	Symbol	Character
$(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}), \Gamma_{25}$	OI(y) = -OII(z)	R_1	Octahedral minus tilt
$(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}), \Gamma_{25}$	OI(x) = -OIII(z)	R_2	Octahedral minus tilt
$(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}), \Gamma_{25}$	OII(x) = -OIII(y)	R_3	Octahedral minus tilt
$(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}), \Gamma_{15}$	OI(y) = OII(z)	G_{O1}	Octahedral minus distortion
$(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}), \Gamma_{15}$	OI(x) = OIII(z)	G_{O2}	Octahedral minus distortion
$(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}), \Gamma_{15}$	OII(x) = OIII(y)	G_{O3}	Octahedral minus distortion
$(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}), \Gamma_{15}$	A(x)	G_{A1}	A cation displacement
$(\frac{\tilde{1}}{2}, \frac{\tilde{1}}{2}, \frac{\tilde{1}}{2}), \Gamma_{15}$	A(y)	G_{A2}	A cation displacement
$(\frac{\tilde{1}}{2}, \frac{\tilde{1}}{2}, \frac{\tilde{1}}{2}), \Gamma_{15}$	A(z)	G_{A3}	A cation displacement
$(0, \frac{1}{2}, \frac{1}{2}), M_3$	OI(y) = -OII(z)	M_1	Octahedral plus tilt
$(\frac{1}{2}, 0, \frac{1}{2}), M_3$	OI(x) = -OIII(z)	M_2	Octahedral plus tilt
$(\frac{\tilde{1}}{2}, \frac{1}{2}, \tilde{0}), M_3$	OII(x) = -OIII(y)	M_3	Octahedral plus tilt
$(0, \frac{1}{2}, \frac{1}{2}), M_1$	OI(y) = OII(z)	H_1	Octahedral plus distortion
$(\frac{1}{2}, 0, \frac{1}{2}), M_1$	OI(x) = OIII(z)	H_2	Octahedral plus distortion
$(\frac{1}{2}, \frac{1}{2}, 0), M_1$	OII(x) = OIII(y)	H_3	Octahedral plus distortion
$(0, \frac{1}{2}, \frac{1}{2}), M_2$	OII(y) = -OI(z)	K_1	Octahedral plus distortion
$(\frac{1}{2}, 0, \frac{1}{2}), M_2$	OI(z) = -OIII(x)	K_2	Octahedral plus distortion
$(\frac{1}{2}, \frac{1}{2}, 0), M_2$	OIII(x) = -OII(y)	K_3	Octahedral plus distortion
$(\frac{1}{2}, 0, 0), M_{5'}$	OIII(y)	X_{O12}	Octahedral distortion
$(\frac{1}{2}, 0, 0), M_5'$	OIII(z)	X_{O13}	Octahedral distortion
$(0, \frac{1}{2}, 0), M_5'$	OII(z)	X_{O23}	Octahedral distortion
$(0, \frac{1}{2}, 0), M_5'$	OII(x)	X_{O21}	Octahedral distortion
$(0, 0, \frac{1}{2}), M_5'$	OI(x)	X_{O31}	Octahedral distortion
$(0, 0, \frac{1}{2}), M_{5'}$	OI(y)	X_{O32}	Octahedral distortion
$(\frac{1}{2}, 0, 0), M_5'$	A(y)	X_{A12}	Cation displacement
$(\frac{1}{2}, 0, 0), M_5'$	A(z)	X_{A13}	Cation displacement
$(0, \frac{1}{2}, 0), M_5'$	A(z)	X_{A23}	Cation displacement
$(0, \frac{1}{2}, 0), M_5'$	A(x)	X_{A21}	Cation displacement
$(0, 0, \frac{1}{2}), M_{5'}$	A(x)	X_{A31}	Cation displacement
$(0, 0, \frac{1}{2}), M_{5'}$	A(y)	X_{A32}	Cation displacement

addenda and errata

Table 3

The space group, possible condensed modes and non-zero pseudocubic spontaneous macrostrain in the nine hettotypes.

Number	Space group	Allowed modes	Macrostrain
1	I_{4}/m_{cm} (140)	R.	e = e* e
2	Imma (74)	$R_3 = R_2$	$c_{11} = c_{22}, c_{33}$ $c_{11} = c_{22}, c_{33}$
2	Ininia (71)	$G_{11} = G_{11}$	$c_{11} = c_{33}, c_{22}, c_{31}$
		$G_{ii} = G_{ij}$	
3	$R\bar{3}c$ (167)	$B_{A1} = B_{A3}$ $R_1 = R_2 = R_2$	$\varepsilon_{11} = \varepsilon_{22} = \varepsilon_{22}$, $\varepsilon_{22} = \varepsilon_{21} = \varepsilon_{12}$
4	P4/mbm (127)	$M_1 = M_2 = M_3$ M_2	$c_{11} = c_{22} = c_{33}, c_{23} = c_{31} = c_{12}$
5	I4/mmm (139)	$M_1 - M_2$	$e_{11} = e_{22}, e_{33}$
5	11/11/11/11/(155)	$H_1 = H_2 \neq H_2$	$c_{11} = c_{22}, c_{33}$
6	$Im\bar{3}$ (204)	$M_1 = M_2 - M_3$ $M_4 - M_2 - M_3$	$\varepsilon_{ii} = \varepsilon_{ii} = \varepsilon_{ii}$
0	11115 (201)	$H_1 = H_2 = H_3$ $H_1 = H_2 = H_2$	$c_{11} = c_{22} = c_{33}$
7	Cmcm (63)	R_{2}	Erri Engi Eng
,	emem (65)	M ₂	011, 022, 033
		Geo	
		G ₁₂	
		H_2	
		Xom	
		X 432	
8	$P4_2/nmc$ (137)	R_{2}	$\mathcal{E}_{11} = \mathcal{E}_{22}; \mathcal{E}_{22}$
0	1 12/11/10 (107)	$M_1 = M_2$	$o_{11} = o_{22}, o_{33}$
		G_{cc}	
		$H_1 = H_2$	
		$X_{012} = X_{022}$	
		$X_{412} = X_{422}$	
9	Pnma (62)	$R_1 = R_2$	$\epsilon_{11} = \epsilon_{22}; \epsilon_{22}; \epsilon_{21}$
-	()	M ₂	-11 -33, -22, -31
		$G_{01} = G_{02}$	
		$G_{41} = G_{42}$	
		K_2	
		$\tilde{X_{021}} = X_{023}$	
		$X_{421} = X_{422}$	
		A21A23	

Table 4

Weights of condensed modes in units of $u Å^2$.

Hettotype	Material	$W(R_i)$	$W(M_i)$	$W(X_{Aij})$	$W(X_{Oij})$	$W(G_{Ai})$	$W(G_{Oi})$	$W(H_i)$	$W(K_i)$	Ref.†	Entry
1 <i>R</i> ₃	SrTiO ₃ , 77 K	0.0726								1	1
	SrZrO ₃ , 1223 K	1.6971								2	2
$2 R_1 = R_3$	BaCeO ₃ , 573 K	6.7294				0.0586	0.1460			3	3
$3 R_1 = R_2 = R_3$	BaCeO ₃ , 773 K	5.2701								3	4
	LaGeO ₃ , 673 K	4.3662								4	5
4 <i>M</i> ₃	NaNbO ₃ , 888 K		0.9520							5	6
	NaTaO ₃ , 878 K		0.8965							5	7
$5 M_1 = M_2$	No available data										
$6 M_1 = M_2 = M_3$	CaCu ₃ Ti ₄ O ₁₂		10.2753					0.2031		6	8
	Tb _{0.67} Cu ₃ Ti ₄ O ₁₂		9.9740					0.1964		6	9
	CaCu ₃ Mn ₄ O ₁₂		9.2271					0.1323		7	10
	Li _{0.36} WO ₃		5.0358					0.0060		8	11
	Na _{0.73} WO ₃		0.3953					0.0000		8	12
	Na _{0.54} WO ₃		0.3657					0.0000		8	13
$7 R_2, M_3$	NaNbO3, 813 K	0.8442	1.2912	0.0082	0.0012	0.0001	0.0002	0.0042		5	14
	NaTaO ₃ , 803 K	0.9408	1.1623	0.0808	0.0048	0.0000	0.0067	0.0013		5	15
	SrZrO ₃ , 973 K	3.1806	0.8497	0.4539	0.0063	0.0154	0.0118	0.0002		2	16
$8 M_1 = M_2, R_3$	CaFeTi ₂ O ₆	4.3399	7.3194	0.3690	0.1987		0.0508	0.0015		9	17
9 $R_1 = R_3, M_2$	BaCeO ₃ , 473 K	7.2126	0.5108	0.8058	0.0503	0.0775	0.1518		0.0002	3	18
	SrZrO ₃	5.8137	1.2545	1.7364	0.0958	0.0471	0.1209		0.0001	2	19
	LaGeO ₃	5.0130	0.4181	1.1826	0.0162	0.0713	0.1034		0.0002	4	20
	PrFeO ₃	7.4537	1.7425	8.3611	0.2237	0.3453	0.1390		0.0000	10	21
	NdFeO ₃	8.3981	1.9033	10.7150	0.2898	0.4901	0.1649		0.0000	10	22
	SmFeO ₃	9.6041	2.3606	15.1215	0.4215	0.7547	0.1970		0.0005	10	23
	EuFeO ₃	10.0301	2.5231	17.2613	0.5149	0.9157	0.2237		0.0000	10	24
	GdFeO ₃	10.2814	2.6910	19.5499	0.5419	1.0893	0.2683		0.0000	10	25
	TbFeO ₃	11.1054	2.7621	20.4797	0.6507	1.1498	0.2368		0.0000	8	26
	DyFeO ₃	11.5369	2.9724	22.5061	0.7089	1.3311	0.2471		0.0002	8	27
	HoFeO ₃	12.0370	3.0026	23.8465	0.7804	1.4574	0.2704		0.0002	10	28
	ErFeO ₃	12.8142	3.1006	24.9061	0.8218	1.5771	0.3205		0.0000	10	29
	TmFeO ₃	13.1795	3.0947	25.1013	0.9675	1.6745	0.2982		0.0000	10	30
	YbFeO ₃	13.6153	3.2967	26.7549	1.0592	1.7761	0.3007		0.0000	10	31
	LuFeO ₃	14.3837	3.2072	27.5146	1.0463	1.8962	0.2892		0.0000	10	32

[†] References: (1) Unoki & Sakudo (1967); (2) Kennedy *et al.* (1999); (3) Knight (1995); (4) Howard & Kennedy (1999); (5) Darlington & Knight (1999); (6) Bochu *et al.* (1979); (7) Chenevas *et al.* (1975); (8) Wiseman & Dickens (1976); (9) Leinenweber & Parise (1995); (10) Marezio *et al.* (1970).