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Abstract

The notation of crystallography in arbitrary dimensions
is considered. Recommended symbols for point-group
transformations, geometric crystal classes, families and
systems are presented.

1. Introduction

The derivation of all 230 three-dimensional space
groups by Fedorov (1891a,b) and Schoen¯ies (1891)
became the geometrical and group-theoretical basis for
crystal structure analysis developed by both Braggs
following the discovery of X-ray diffraction by von Laue
in 1912. Space-group information based on these deri-
vations became widely available to users in International
Tables for Crystallography (1995) and its predecessor
publications, hereafter ITC.

The mathematical formulation of the theory of space
groups, for example by Bieberbach (1911), led naturally
to their generalization in arbitrary dimensions. An
algebraic treatment of the theory was given by Ascher &
Janner (1965, 1968). Lists of transformations, point
groups, lattices and space groups were derived for
speci®c higher dimensions. Special cases were treated by
Heesch (1929), Hurley (1951, 1966) and Janssen (1969)
for four-dimensional space. The ®rst complete list of all
four-dimensional space groups was established by
Brown et al. (1978). Partial results in ®ve, six and seven

dimensions have been derived by Plesken & Pohst
(1977), Janner et al. (1983) and Plesken & Hanrath
(1984).

The increasing use of three-dimensional space groups
for structure determination during the early decades of
this century made a nomenclature that would be widely
accepted necessary. The notations of Schoen¯ies and of
Hermann±Mauguin successfully ®lled this need. The
former is often used by spectroscopists, the latter by
crystallographers. Such a notation for higher dimensions
is presently missing, although the number of ®elds in
which the use of speci®c space groups in higher
dimensions has become essential has increased steadily.
This situation holds not only for mathematics where, for
example, certain groups are associated with spaces of
constant curvature but increasingly in describing the
symmetry of aperiodic systems such as quasicrystals
(Yamamoto, 1996). Although a complete overview of all
possible applications is not yet available, it is useful to
consider a uni®ed nomenclature before the diversity of
the ®elds and usages leads to widely different de facto
nomenclatures and notations for the same objects.
Concern for this situation led the Commission on
Crystallographic Nomenclature of the International
Union for Crystallography to establish a Subcommittee
to study a possible system of notation.

The charge of the Subcommittee was to assess the
extent to which the representational symbolism in use at
that time (1990) in the ®eld of n-dimensional crystal-
lography may have become so nonuniform that it is
unacceptably ambiguous. If the results of this assessment
so warranted, the Subcommittee was charged further
with proposing a set of recommendations for a uni®ed
nomenclature and symbolism for use in n-dimensional
crystallography, following adequate discussion with
other leaders in the ®eld.

The ®rst Report of the Subcommittee, presented
herein, discusses the notation of point-group transfor-
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mations and geometric crystal classes. Further, a
proposal is made for the standard setting of repre-
sentative lattices for four-, ®ve- and six-dimensional
crystal families. The notation for arithmetic crystal
classes, centring symbols, Bravais classes, and ®nally
space groups in higher dimensions will be presented in a
subsequent Report.

2. Symbols and terms

The theory of crystallographic point groups, lattices and
space groups may be formulated quite independently of
their possible applications by treating it as a mathema-
tical problem. From this viewpoint, it becomes a matter
of the determination of all non-isomorphic crystal-
lographic space groups in n dimensions. Applications
enter in treating equivalence relations between groups
or in introducing a nomenclature. Only 219 classes of
space groups need be distinguished in three dimensions
if any two space groups are regarded as equivalent if and
only if they are isomorphic or, as shown by Bieberbach
(1911), to be equivalent if they are conjugated sub-
groups of the general af®ne group. However, when the
handedness of a structure is of importance, a ®ner
classi®cation becomes necessary, leading to the 230
classes because there are 11 three-dimensional enan-
tiomorphic pairs. This extension is a well known
example of the effect of physical considerations on the
choice of the equivalence de®nitions. Inferences arising
from applications will not be discussed in this Report.
Instead, group-theoretical isomorphism will be used as
an equivalence relation. The isomorphism classes of
space groups lead naturally to arithmetic crystal classes
and geometric crystal classes, which can be grouped into
Bravais classes, systems and families.

This Report deals with symbols for orthogonal
transformations, geometric crystal classes and with the
choice of standard bases for lattices. The point groups in
the same geometric crystal class, which are conjugate
subgroups of the orthogonal group O�n�, receive the
same symbol, and this is discussed in x4. In the same way,
orthogonal transformations, which are elements of O�n�,
receive the same symbol when they are conjugate in this
group. This means that the symbol does not give infor-
mation about the orientation of the orthogonal trans-
formation. Sometimes, the term type of orthogonal
transformation is used for this conjugacy class. Symbols
for these transformations are treated in x3.

The geometric crystal classes can be grouped together
in point-group systems and families, see x4 and Table 3.
An explanation of various terms can be found in ch. 8 of
Vol. A of ITC. The relation of the various terms used is
indicated in Fig. 1.

A standard basis may be indicated for an invariant
lattice in each family. Up to orientation, such a standard
basis is characterized by its metric tensor with elements,
gij � ~ai � ~aj, where ~ai (i � 1; . . . ; n) are the basis vectors.

The standard bases are chosen to give a particularly
simple form to the matrices of the point groups
belonging to the family.

Some symbols used in this Report (the symbol as used
in ITC is given in the second column):

3. Orthogonal transformations

Point-group transformations are orthogonal transfor-
mations in nD space. They are represented by orthog-
onal matrices on an orthogonal basis. A point-group
transformation is crystallographic if there is an nD
lattice that is left invariant. On a basis of such an
invariant lattice, the point-group transformation is
represented by an integer matrix.

An orthogonal transformation can be put in matrix
form, which is the direct sum of 1D and 2D orthogonal
matrices, by a real basis transformation. Any other
orthogonal transformation in the same conjugacy class
of O�n�, i.e. of the same type, can be brought into the
same block form. The 1D blocks are �1, the 2D blocks
are of the form

cos � ÿ sin�
sin� cos �

� �
: �1�

Fig. 1. The relation between various crystallographic equivalence
concepts.

nD n-dimensional
~a a Vector
~a � ~b �a; b�, a � b Scalar product of vectors ~a and

~b
gij Coef®cients of the metric

tensor: gij � ~ai � ~aj

E�n� E nD Euclidean group
O�n� Group of all nD orthogonal

transformations
��q� Euler function
K1 ? K2 K1 ? K2 External product (see x4)
�q� Crystallographic orthogonal

transformation of order q
(see x3)
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If the transformation is of ®nite order q, the value of � is
2�p=q, where p and q are mutually prime integers.

An integer matrix of ®nite order corresponds to an
orthogonal transformation on the basis of an invariant
lattice. Therefore, it can be brought into block form with
blocks of dimension 1 or 2 by a real basis transforma-
tion. It can also be brought into block form by a rational
basis transformation but the minimal dimension of the
blocks is now generally larger. Rationally irreducible
blocks can be written as a sum of blocks with eigen-
values exp�2�ip=q� for ®xed q by a real transformation.
The dimension of the rationally irreducible block is
given by ��q�, the Euler function; ��q� for integer q
is the number of integers coprime with q and smaller
than q.

This relationship suggests a possible notation. The
type of orthogonal transformation of ®nite order is given
by the rational numbers p=q in the 2D blocks and the
number of 1's and ÿ1's in the block form. These
numbers are unique up to a permutation of blocks. All
orthogonal transformations that can be transformed into
each other by a real basis transformation give the same
numbers. In particular, all elements of one conjugacy
class in O�n� are given the same characterizing numbers.

Considering the reduction by rational transforma-
tions, each rationally irreducible block of dimension
higher than two can be reduced further to a sum of 2D
blocks by a real transformation. In that case, the ��q�
conjugate roots of unity occur simultaneously. They
have the same q value. This forms the basis of the
proposal by Hermann (1949) for a notation of crystal-
lographic transformations. His notation gives the
sequence of orders of the rationally irreducible blocks.
For example, the sequence 321 indicates a transforma-
tion which in reduced form is the direct sum of a 2D
threefold rotation, a 1D inversion (of order 2) and the
1D identity. Therefore, such a sequence corresponds to a
4D transformation. Hermann denotes the eightfold
rotation with values p=q � 1=8; 3=8; 5=8; 7=8, which is a
4D operation, by `8'. This nomenclature is only applic-
able for crystallographic transformations and suppresses
the information on the values of p. Therefore, we
recommend a slightly different scheme.

The ®rst principle is to use the same symbol for an
orthogonal transformation in n dimensions as that in
n� k dimensions obtained from the former by adding k
1's. The only exception is the unit element in n dimen-
sions denoted by 1n. The second principle is to retain the
symbols in ITC in one, two and three dimensions,
namely 1, m in one dimension, 2, 3, 4, 6 in two dimen-
sions, and �1, �3, �4, �6 in three dimensions.

All information on the number of eigenvalues �1 is
hence suppressed in the symbol, except in the case of
the unit element 1n. If it is desired for some reason to
indicate explicitly the dimension of the space in which a
transformation acts, it is possible to add a number of
digits 1. Then, 411 is clearly a 4D transformation, to be

distinguished from the 3D 41. If there are only eigen-
values �1 and exactly one eigenvalue ÿ1, then the
symbol is m according to the second principle above.
Pairs of eigenvalues ÿ1 can be combined to give 2D
twofold rotations written as 2. We call the number of
eigenvalues different from unity the effective dimension
of the orthogonal transformation.

A 3- (4- or 6-) fold rotation in two dimensions can be
written as 3 (4 or 6, respectively). The rotations 3 and 32,
as well as the pairs 4, 43 and 6, 65 denote the same
rotation type because 3 and 32 can be transformed into
each other by a real transformation. This is generally
true: orthogonal transformations R and Rÿ1 have the
same eigenvalues and, therefore, are of the same type.

A 5-, 8-, 10- or 12-fold rotation is not crystallographic
in two dimensions (there is no invariant lattice). More-
over, there are two different rotations with the same
order: 5 and 52, which must be distinguished. The same
holds for 8 and 83, 10 and 103, and for 12 and 125.

There are three different choices for 7-, 9-, 14- or 18-
fold rotations in two dimensions: 7, 72 and 73 and the
triplets 9, 92, 94; 14, 143, 145; 18, 185, 187.

In general, for a q-fold rotation in two dimensions,
there are ��q�=2 different rotations. For arbitrary
dimensions, the rotation can be written as a sequence of
numbers. For example, 7523 is equivalent to the direct
sum of rotations 7, 52 and 3. It exists in spaces of
dimension 6 and higher and is of order 105. Its effective
dimension is 6 and it can be written as

cos�2�=7� ÿ sin�2�=7� 0 0 0 0

sin�2�=7� cos�2�=7� 0 0 0 0

0 0 cos�4�=5� ÿ sin�4�=5� 0 0

0 0 sin�4�=5� cos�4�=5� 0 0

0 0 0 0 cos�2�=3� ÿ sin�2�=3�
0 0 0 0 sin�2�=3� cos�2�=3�

0BBBBBB@

1CCCCCCA:

The same rotation in higher-dimensional spaces is
denoted by the same symbol since the digit 1 is omitted.
If q becomes 10 or larger, it should be separated from
the other digits by a thin space. If q becomes 22 or larger,
there can be confusion whether this is 22 or two digits 2.
Then one has to put the number in curly brackets: {22} is
a ten-dimensional rotation, but 22 is a four-dimensional
rotation, usually denoted by 14.

In the case of a crystallographic transformation, an
eigenvalue exp�2�ip=q� is always accompanied by its
conjugates, the ��q� eigenvalues exp�2�ip0=q� with p0

coprime with q. This allows the symbol for crystal-
lographic transformations of dimension 4 or higher to be
shortened. For example, the rotation 77273 is crystal-
lographic and minimally of dimension 6. Because the six
eigenvalues always come together, it is suf®cient to give
only one of them (with the smallest denominator value).
The symbol is chosen as [7], standing for the longer
symbol 77273. This allows the crystallographic trans-
formation �5� � 552 to be distinguished from the non-
crystallographic transformation 55, another 4D
transformation.
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A transformation with determinant ÿ1 contains an
odd number of eigenvalues ÿ1. It is customary in three
dimensions to denote the product of the inversion and a
q-fold rotation (q> 2) by an overbar: �4 is a 3D trans-
formation obtained as the product of �1 and the rotation
4. Its matrix is the direct sum of the 2D matrix 43 (which
is of the same type as 4) and the number ÿ1.

�4 � ÿ
0 ÿ1 0

1 0 0

0 0 1

0@ 1A � 0 1 0

ÿ1 0 0

0 0 ÿ1

0@ 1A:
An exception is the product of a twofold rotation and �1,
because this is a mirror, denoted by m , not by �2. It
should be noted that the transformation with determi-
nantÿ1 denoted by �3 is the product of �1 and the rotation
3, but at the same time it is the sum of the rotation 65 and
ÿ1. On the other hand, �6 is the sum of 32 and ÿ1. (In
ITC, the corresponding group �6 is the same as 3=m.) In
the past, one has chosen a symbol using multiplication
(�6 � �1� 6) rather than summation (3=m � 3�m).

�6 � ÿ
cos�2�=6� ÿ sin�2�=6� 0

sin�2�=6� cos�2�=6� 0

0 0 1

0B@
1CA

�
cos�4�=3� ÿ sin�4�=3� 0

sin�4�=3� cos�4�=3� 0

0 0 ÿ1

0B@
1CA;

�3 �
cos�10�=6� ÿ sin�10�=6� 0

sin�10�=6� cos�10�=6� 0

0 0 ÿ1

0B@
1CA:

This notation is not different in higher dimensions: an
odd-dimensional transformation with determinant ÿ1 is
the product of a rotation and the inversion in the odd-
dimensional space and can be denoted by a bar above
the digits corresponding to the q-fold rotation (q> 2).

552 �

cos�14�=10� ÿ sin�14�=10� 0 0 0

sin�14�=10� cos�14�=10� 0 0 0

0 0 cos�18�=10� ÿ sin�18�=10� 0

0 0 sin�18�=10� cos�18�=10� 0

0 0 0 0 ÿ1

0BBBB@
1CCCCA:

This transformation is of order 10. The same symbol can
be used for a (5� k)-dimensional transformation,
obtainable from this 5D operation by adding k diagonal
terms 1. This is equivalent to obtaining 552 from the
rotation 552 on multiplication by the total inversion in a
space of dimension equal to the effective dimension of
552 (which is four) plus one.

A general nD rotation (with determinant �1) is
denoted by a series q

p1
1 q

p2
2 . . . 22 . . . of k digits. This is the

symbol already in use for a 2k-dimensional rotation. The
number of omitted digits 1 is nÿ 2k. The symbol for a
general orthogonal transformation of determinant ÿ1 is
q

p1
1 q

p2
2 . . . 22 . . ., again with k digits. This is the symbol for

a (2k� 1)-dimensional operation. In nD space, there
are still nÿ 2kÿ 1 omitted digits 1.

Inversion is a special case. It is either a rotation (in
even dimensions) or has a determinant equal to ÿ1 (in
odd dimensions). For even dimensions, this element may
be written as a series of 2's. To stress its special role, the
transformation in n dimensions is denoted as 1n.

A consequence of this system of notation is that a
property sometimes used in three dimensions is not
generally true: if a q-fold rotation belongs to the Laue
group, then the transformation �q also belongs to it.
Indeed it is true that, if A is a rotation without
twofold component and of dimension 2k, then A is a
(2k� 1)-dimensional orthogonal transformation and
ÿA � 12k�1 � A � A. In particular, ÿ3 � 3 in three
dimensions, of course. However, this is no longer true in
an arbitrary dimension. In general, q is not equal to ÿ �q.
In four dimensions, the transformation 4 is actually 411.
Then its opposite ÿ411 � 42 is also a rotation and
belongs to the same Laue group as 4. But �4 in four
dimensions is actually �41 and has determinantÿ1, which
cannot be changed by multiplication with 14. The 4D
operators 411 and �41, in short notation 4 and �4, leave
different lattices invariant. It should be noted that one
can make the remark already in two dimensions. There,
ÿ4 is not �4 but 4 itself.

It is noteworthy that, in some cases, the cyclic groups
generated by q and �q (for integer q) belong to the same
crystal family (family preserving �q) and, in other cases,
to different families (family breaking �q). Wondratschek
(1998) observed that, in odd dimensions, the groups
generated by q and �q belong to the same crystal family if
and only if there is exactly one constituent �1 (and no
constituent ÿ1) in the operation q and, hence, one ÿ1
and no �1 in �q. In all other cases, �q is family breaking.

The Subcommittee has discussed this point exten-
sively. The reasons for recommending the use of the
overbar in this Report are, in short, the following.

(i) The notation with a bar is a natural generalization
of that in three dimensions.

(ii) If a transformation T leaves the Fourier intensity
the same, then ÿT has this property also. It is very
simple to determine the symbol for ÿT if one knows
that for T, but that is not necessarily �T.

(iii) All discussed alternatives were more compli-
cated. The reason �6 was chosen in three dimensions and
not 3=m is that the former symbol is simpler.

(iv) It is always possible to use a more extensive
symbol: then ÿ41 is �4.
Examples (notice that rotations over angles � and ÿ�
have the same symbol):

�5� �
cos�2�=5� ÿ sin�2�=5� 0 0

sin�2�=5� cos�2�=5� 0 0

0 0 cos�4�=5� ÿ sin�4�=5�
0 0 sin�4�=5� cos�4�=5�

0BB@
1CCA; �2�
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43 �

cos�2�=4� ÿ sin�2�=4� 0 0 0

sin�2�=4� cos�2�=4� 0 0 0

0 0 cos�2�=6� ÿ sin�2�=6� 0

0 0 sin�2�=6� cos�2�=6� 0

0 0 0 0 ÿ1

0BBBB@
1CCCCA;

�3�

432 �

cos�2�=4� ÿ sin�2�=4� 0 0 0 0 0

sin�2�=4� cos�2�=4� 0 0 0 0 0

0 0 cos�2�=6� ÿ sin�2�=6� 0 0 0

0 0 sin�2�=6� cos�2�=6� 0 0 0

0 0 0 0 ÿ1 0 0

0 0 0 0 0 ÿ1 0

0 0 0 0 0 0 ÿ1

0BBBBBBBB@

1CCCCCCCCA
:

�4�

Notice that the 4D transformation 32 and the 6D
transformations 422, 432 and 622 have the same symbols
as the corresponding 3D point groups in the standard
notation. It should be clear from the context what kind
of object one considers.

Recommendation 1. An orthogonal transformation of
®nite order that can be written after a suitable real basis
transformation as the direct sum

S �
Mr

i�1

cos 2�pi=qi ÿ sin 2�pi=qi

sin 2�pi=qi cos 2�pi=qi

� �
�
Mm

j�1

aj �
Ml

k�1

bk;

aj � ÿ1; bk � 1; 2r�m� l � n; �5�
should be written in full as

q
p1
1 q

p2
2 . . . 22 . . . �6�

with m=2 2's when m is even,

d
c1
1 d

c2
2 . . . 22 . . . �7�

with �mÿ 1�=2 2's when m is odd, and with
ci=di � pi=qi � 1

2 �mod 1�, but it is

1n �8�
when l � n (only eigenvalues �1), and

1m; �9�
when m � n (only eigenvalues ÿ1). The order is such
that

qi � qi�1 � . . . ; pi � pi�1 if qi � qi�1: �10�

Recommendation 2. For consistency with current
practice, m should be used for 11, 2 is used exceptionally
instead of 12, and �1 is used instead of 13.

Recommendation 3. In the case of a crystallographic
orthogonal transformation, a short form is obtained by
combining conjugate blocks with the same q into the
symbol �q�. This represents the sequence

�q� � qp1 . . . qpe ; �11�
where p1; . . . ; pe are the ��q�=2 integers that are
coprime with q and smaller than q=2.

Recommendation 4. The symbol does not depend on
the number of eigenvalues �1. However, if there are

only eigenvalues �1 and no others, then the transfor-
mation should be denoted by 1n. If it is desirable to
indicate explicitly the dimension of the transformation,
as many digits 1 may be added as there are eigenvalues
equal to �1.

The symbols for elements of crystallographic point
groups in dimensions up to 6 are given in Table 1. The
sequence mentioned in the heading is the Hermann
symbol.

4. Geometric crystal classes

An nD point group is a subgroup of the orthogonal
group in n dimensions. If it leaves a subspace invariant,
it can, by a suitable real basis transformation, be put into
reduced form, i.e. all elements are simultaneously in the
form of direct sums of blocks having the same dimension
for all elements. If the dimensions of the invariant
subspaces are n1; n2; . . ., then the point group is said to
be (n1 � n2 � . . .)-reducible or (n1 � n2 � . . .)-R-redu-
cible. All point groups in the same geometric crystal
class have the same reducibility character. As in the case
of point transformations, point groups are denoted by a
symbol for the space in which they act effectively. In
particular, the symbols in two and three dimensions
should remain the same as those used in ITC. These
symbols remain the symbols for the geometric crystal
class. For higher-dimensional spaces, the symbols can, to
a large extent, be based on the reducibility of the point
group, just as for point transformations. Some of these
ideas follow those of Weigel et al. (1987, 1993), who have
proposed symbols for point groups in four, ®ve and six
dimensions.

A special case for a point group occurs in reduced
form with m blocks if it is the direct product of m
subgroups consisting of unit matrices, except for one of
the m blocks. An example is the 3D group 4=mmm with
generating matrices

0 ÿ1 0

1 0 0

0 0 1

0@ 1A; ÿ1 0 0

0 1 0

0 0 1

0@ 1A; 1 0 0

0 1 0

0 0 ÿ1

0@ 1A:
�12�

This is the direct product of the subgroup 4mm of order
eight generated by the ®rst two matrices and the group
m of order two generated by the third matrix. In this
situation, the group is the direct product of subgroups
acting only in one of the m mutually orthogonal invar-
iant subspaces. The symbol for such a group can be
related to those for lower-dimensional point groups:

K � K1 ? K2 ? . . . ? Km:

In the example, group 4=mmm would have the alter-
native symbol 4mm?m. However, preserving the prin-
ciple that standard notation be retained in dimensions
up to three, the preferred symbol remains 4=mmm.
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Choosing a basis of an invariant lattice that makes the
simple structure evident is very useful because the
matrices remain simple.

An (m1 �m2)-reducible point group H is always a
subgroup of an (m1 �m2)-dimensional point group
K � K1 ? K2, where Ki is an mi-dimensional point
group. The elements h of H can be written as pairs
(h1; h2) of elements of K1 and K2, respectively. The
elements h1 generate K1 and the elements h2 generate
K2. H is then said to be a subdirect product of K1 and K2.

If the elements of the subdirect product of K1 and K2

are denoted by (h1; h2), then the elements (h1; e) form
an invariant subgroup H1 and the elements (e; h2) an

invariant subgroup H2 of K1 and K2, respectively. The
quotient groups K1=H1 and K2=H2 are isomorphic. All
subdirect products of K1 and K2 are obtained by
considering all invariant subgroups H1 and H2, taking
those pairs for which K1=H1 and K2=H2 are isomorphic
and considering all isomorphisms from one to the other.

A special case of a subdirect product is that in which
K1 � H1 and K2 � H2. In this case, the subdirect
product is simply a direct product of H1 and H2, and is
denoted by H1 ? H2 .

Suppose a group is the subdirect product of an
n-dimensional point group K1 and an m-dimensional
point group K2. The elements are pairs (h1; h2), where

Table 1. Symbols for crystallographic point-group transformations

n
Hermann (1949)
symbol Order Parity Symbol

Hermann (1949)
symbol Order Parity Symbol

�1 1 1 � 1 2 2 ÿ m

�2 22 2 � 2 3 3 � 3
4 4 � 4 6 6 � 6

�3 222 2 ÿ �1 32 6 ÿ �6
42 4 ÿ �4 62 6 ÿ �3

�4 2222 2 � �14 322 6 � 32
33 3 � 33 422 4 � 42
43 12 � 43 44 4 � 44
5 5 � [5] 622 6 � 62
63 6 � 63 64 12 � 64
66 6 � 66 8 8 � [8]
(10) 10 � [10] (12) 12 � [12]

�5 22222 2 ÿ �15 3222 6 ÿ �62
332 6 ÿ 66 4222 4 ÿ �42
432 12 ÿ 64 442 4 ÿ 44
52 10 ÿ �10� 6222 6 ÿ �32
632 6 ÿ 63 642 12 ÿ 43
662 6 ÿ 33 82 8 ÿ �8�
10 2 10 ÿ �5� 12 2 12 ÿ �12�

�6 222222 2 � �16 32222 6 � 322
3322 6 � 332 333 3 � 333
42222 4 � 422 4322 12 � 432
433 12 � 433 4422 4 � 442
443 12 � 443 444 4 � 444
522 10 � [5]2 53 15 � [5]3
54 20 � [5]4 62222 6 � 622
6322 6 � 632 633 6 � 633
6422 12 � 642 643 12 � 643
644 12 � 644 65 30 � 6[5]
6622 6 � 662 663 6 � 663
664 12 � 664 666 6 � 666
7 7 � [7] 822 8 � [8]2
83 24 � [8]3 84 8 � [8]4
86 24 � [8]6 9 9 � [9]
10 22 10 � [10]2 10 3 30 � [10]3
10 4 20 � [10]4 10 6 30 � [10]6
12 22 12 � [12]2 12 3 12 � [12]3
12 4 12 � [12]4 12 6 12 � [12]6
14 14 � [14] 18 18 � [18]

[5� � 552, �8� � 883, �10� � 10 103, �12� � 12 125, �7� � 77273, �9� � 99294, �14� � 14 143 145, �18� � 18 185 187. Parity is � if the determinant is
positive, otherwise ÿ.
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the elements h1 form the group K1 and the elements h2

the group K2. To each element of point group K1, there
corresponds at least one element of K2 and vice versa. Its
symbol may be taken as that of K1 with corresponding
elements of K2 placed between parentheses. For
example, the subgroup of 4mm?m generated by the
pairs �4;m� and �m; 1� is the subdirect product of 4mm
and m and can be denoted by 4mm(m1m). The second m
in 4mm is the product of 4 and the ®rst m. Corre-
spondingly, the second m in the parentheses is the
product of m and 1. Because the symbols for subdirect
products tend to become rather long, one writes
preferentially 4m(m1) instead of 4mm(m1m). If the
subgroup H1 of the elements of K1 associated with the
identity in K2 is not trivial, then the corresponding
symbols in parentheses are 1's and analogously for H2.
The example 4=mmm could be written as 4mm1(111m),
but in this case the shorter notation is 4mm?m.

The subgroups 4 and 4mm of the 3D group 4mm?m
are 2D and are denoted by 4 and 4mm, respectively. The
subgroup 4=m has the same reducibility character as
4=mmm and is written as 4?m. The other subgroups are
more complicated. For the group 422, the elements in
the ®rst 2D block form the group 4mm but the three
elements indicated (4, 2 and 2) are associated with 1,
ÿ1 and ÿ1, respectively. The symbol is therefore
4mm(1mm). The group is generated by

0 ÿ1 0

1 0 0

0 0 1

0@ 1A; ÿ1 0 0

0 1 0

0 0 ÿ1

0@ 1A: �13�

Similarly, the group �42m may be written as 4mm(mm1).
Generators are

0 ÿ1 0

1 0 0

0 0 ÿ1

0@ 1A; ÿ1 0 0

0 1 0

0 0 ÿ1

0@ 1A: �14�

However, because the notation for three-dimensional
point groups should be retained, this procedure is only
used in higher dimensions and 422 is written instead of
4mm(1mm) and �42m instead of 4mm(mm1).

The symbols for one-, two- and three-dimensional
groups are given in Table 2, both with their current
ITC symbol and according to the rules of higher-
dimensional crystallography. The symbols for the R-
reducible 4D point groups are given in Table 3. They are
(3� 1)-, (2� 2)-, (2� 1� 1)- or (1� 1� 1� 1)-redu-
cible. The geometric crystal classes are combined into
point-group systems, the ordering of which is discussed
in the next section.

More than one symbol is occasionally proposed
because there are arguments in favour of various
options, just as in three dimensions �6 has been chosen
instead of 3=m, although there are good arguments for

Table 2. Geometric crystal classes in one dimension, two dimensions and three dimensions

Point-group
system

Order Symbol Alternative Order Symbol Alternative

1D_1 1 1 2 m

2D_1 1 1 12 2 2 12

2D_2 2 m 4 mm m?m
2D_3 4 4 8 4mm
2D_4 3 3 6 3m

6 6 12 6mm

3D_1_1 1 1 13 2 �1 13

3D_2_1 2 m 2 2
4 2=m 2?m

3D_3_1 4 222 mm(mm) 4 mm2 m?m
8 mmm m?m?m

3D_4_1 4 4 8 4mm
4 �4 4(m) 8 4=m 4?m
8 422 4m(1m) 8 �42m 4m(mm)

16 4=mmm 4mm?m
3D_5_1 3 3 6 3m

6 �3 3� �1 6 32 3m(1m)
12 �3m 3m� �1

3D_5_2 6 6 12 6mm
6 �6 3?m 12 6=m 6?m

12 �62m 3m?m 12 622 6m(1m)
24 6=mmm 6mm?m

3D_6_1 12 23 24 m�3 23� �1
24 432 24 �43m
48 m�3m 432� �1
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Table 3. (R-reducible) geometric crystal classes in four dimensions

Point-group
system Order Symbol Alternative Order Symbol Alternative

01_1 1 1
2 14

02_1 2 m 2 �1 13

4 �1?m

03_1 2 2
4 2?2

04_1 4 2mm m?m 4 2?m 2=m
4 21(m2) �1:�1
8 2?mm 2?m?m

05_1 4 4(4) 44

06_1 3 3(3) 33
6 6(6) 66

07_1 4 222
8 222� 14

07_2 8 mmm m?m?m
8 222?m

16 mmmm m?m?m?m

08_1 4 4 4 4(2) 42
8 4mm 8 4?2
8 4m(12) 4:�1 8 4m(22) 42:�1

16 4mm?2

09_1 3 3
6 3m 6 �3�m� 62
6 32(1m) 3:�1

12 �3m�m1� 3m� 14

09_2 6 6 6 3?2
12 6mm 12 6?2
12 3m?2 12 6m(12) 6:�1
24 6mm?2

10_1 8 4m(4m) 44.2

11_1 6 3m(3m) 33.2
12 6m(6m) 66.2

12_1 4 �4
8 �4� 14

8 �42m 8 4m(m2) �4:�1
16 �42m� 14

12_2 8 4?m 8 �4?m
8 422 8 4m(2m) 42.2

16 4mm?m 4=mmm 16 4?mm
16 422?m 16 �42m?m
16 422�14

32 4mm?mm

13_1 6 �3 6 32
6 3?m �6

12 �3m 12 �3?m
12 32?m 12 �3m�1m� �3:�1
12 �3m�mm� 62.2 12 3m?m �62m
24 �3m?m
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Table 3 (cont.)

Point-group
system Order Symbol Alternative Order Symbol Alternative

13_2 12 6?m 6=m 12 3?mm �6?m
12 622
12 61(m2) �3� 2 12 3m(2m) 32.2
24 6?mm 24 622?m
24 �62m?m 3m?mm 24 6mm?m 6=mmm
24 6m1(1m2) 622� 14 24 6m1(m12) �3m� 2
48 6mm?mm

14_1 8 8(83) [8]
16 8m(83m) [8].2

15_1 5 5(52) [5]
10 5m�52m) [5].2 10 10(103) [10]
20 10m(103m) [10].2

16_1 12 12(125) [12]
24 12m(125m) [12].2

17_1 8 41(42) 44�2
16 4m1(412) 44.mm 16 4m1(4m2) 44.222
16 4m1(m42) �4:�4
32 4m11(41mm) 44.mmm

17_2 16 4?4 16 4m1(142) 4:�4
32 4m1(1m4) 422.4 32 4m1(m14) �42m:4
32 4mm?4
64 4mm?4mm

18_1 12 6(4) 64 12 3?4
12 3m(14) 3:�4
24 3?4mm 24 3m?4
24 6?4 24 6m(4m) 64.2
24 6m(m4) �3:�4 24 3m11(14mm) �6:�4
24 3m1(1m4) 24 61(4m) 64.m
24 61(m4) �3:4 24 6m1(412) 3m� 42
24 6m(14) 6:�4
48 3m?4mm 48 6?4mm
48 6mm?4 48 6m1(1m4)
48 6m1(14m) 48 6m1(m14)
48 6m1(41m) 64.mm
96 6mm?4mm

19_1 12 23
24 �43m 24 m�3�mm� 23� 14

24 432(m1m)
48 m�3m�mm1� �43m� 14

19_2 24 m�3 24 23?m
24 432 24 �43m�m1m�
48 m�3m 48 m�43m?m
48 432?m 48 �43m?m
48 m�3m�mmm� 432� 14 48 m�3m�11m�
96 m�3m?m

20_1 6 6(3) 63
12 61(32) 63� 14 12 6m(3m) 63.2
24 6m1(3m2) 63:2� 14
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both. It should become clear in practice which choice
is more convenient. Another example is the choice
between 4=mmm, the present standard choice in three
dimensions, and 4mm?m, which is more in agreement
with the nomenclature we propose for higher dimen-
sions. A third example is the case of the point group
of an octagonal 4D structure, which in projection gives
an octagonal tiling. Its point group is generated by the
transformation [8] and a twofold rotation. The trans-
formation [8] is the same as 883 and can be written in
block form. The twofold rotation acts in both
subspaces as a mirror. The point group may hence be
seen either as a subdirect product 8m�83m� of 8m and
8m or as a group generated by [8] and m(m), in which
case the notation becomes [8]m(m). Again, another
possibility would be to indicate the generators, which act
in the whole xyzu space and the 2D yz plane, respec-
tively. The point group is spanned by the subgroup
generated by [8] and a subgroup generated by a trans-
formation 2. It is the smallest group containing both
subgroups. This can be denoted by giving the symbols
for the generating groups, separated by a dot. An
alternative symbol for the group 8m�83m� in this scheme
is �8�:2. This cannot be used for the 3D point groups: one
still writes 622 (instead of 6.2) and 432 (instead of 4.3).
In general, if the point group K is the smallest group
containing its subgroups K1 and K2, it is denoted by
K1:K2. In the particular case that K is the direct product
of its subgroups K1 and K2, it is denoted by K1 � K2.
Whether [8].2 or 8m�83m� or [8]m(m) is used is a matter
of taste and the most convenient notation should again
become clear in practice. Finally, it might be convenient
to denote a cyclic point group by the symbol for its
generator. Here, one should be careful with symbols of
transformations already in use as symbols for three-
dimensional point groups (222, 32, 422, 622, 432). The
cyclic groups based on these transformations should
have another notation: in standard notation, 16, 3?2,

4�14�, 6�14� and 4�2�?3, respectively. A number of
alternatives are mentioned in Table 3. Synoptic lists
relating the entries in Table 3 to other notations have
been compiled by several authors. In particular, Veys-
seyre (1998) and, separately, Wondratschek (1998) have
related the entries in Table 3 to the crystal classes in
Brown et al. (1978).

Irreducible point groups and point groups having
invariant subspaces of dimension higher than three
cannot use only the symbols of one-, two- and three-
dimensional point groups. Recommendations for these
cases will be given in a subsequent Report.

Recommendation 5. Symbols for geometric crystal
classes are symbols for representative point groups. The
following symbols should be used in point groups that
are the subdirect product of point groups in at most
three dimensions.

(i) A point group in n dimensions that can be written
as the direct product of point groups acting in mutually
perpendicular subspaces is called an external product of
K1;K2; . . . and is denoted by K1 ? K2 ? . . .. A
subdirect product of K1;K2; . . . is a subgroup of the
external product K1 ? K2 ? . . ..

(ii) If the point group is reducible into block form
with blocks of dimension three or less and not an
external product of point groups, the following symbols
are chosen.

For convenience, we consider the case where the
point group K is a subgroup of K1 ? K2. Generalization
to the case with more components is straightforward.
The symbol consists of a pair H1�H2�, where Hi is the
symbol for a two- or three-dimensional point group Ki

or such a symbol with digits 1 added so that (a) the
number of alphanumeric characters is the same in both
symbols, (b) the mth symbol in H1 is associated with the
mth symbol in H2, and (c) the elements of Hi that are
paired with a digit 1 in the other symbol generate an
invariant subgroup.

Table 3 (cont.)

Point-group
system Order Symbol Alternative Order Symbol Alternative

20_2 9 3?3
18 61(63) 66� 3 18 3m?3
18 61(m3) �3:3 18 3m1(1m3)
36 6m1(613) 36 6m1(6m3)
36 3m?3m 36 6m1(m13)
36 6m1(m63)
72 6m11(613m)

20_3 18 6?3
36 6mm?3 36 6?3m
36 6?6 36 6m1(1m3)
36 6m1(163)
72 6mm?3m 72 6mm?6
72 6m1(1m6) 72 6m11(163m)

144 6mm?6mm
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(iii) Simpli®ed symbols are chosen for the groups K
that are the direct product of a subgroup H of index two
and the central inversion 1n. Such a group is denoted by
H � 1n.

5. Families

The set of nD lattices can be partitioned into Bravais
classes, lattice systems (Bravais systems in ch. 8 of ITC)
and families. Lattice systems and families may likewise
be characterized by the geometric crystal classes of the
holohedral point groups.

Lattices for a certain holohedry have a metric tensor
with a number of free parameters. This number is the
dimension of the subspace of the space of second-rank
symmetric tensors that transform with the identity
representation. This dimension is the same for all point
groups in the same geometric class. A speci®c choice of
standard basis can show the reducibility of the space.
Such a standard basis can be used for the de®nition of a
conventional cell. For each family, a lattice may be
chosen such that each other lattice of the family may be
considered as related by centring. As examples, all
orthorhombic lattices in three dimensions can be
obtained by adding centring translations to a primitive
orthorhombic lattice; the lattices of the trigonal/hexag-
onal family can be obtained similarly from a hexagonal
lattice. The choice of standard basis is very important for
the description of structures. Recommended symbols for
four, ®ve and six dimensions are given in Tables 4 to 9,
together with the metric tensors for a chosen standard
basis. 6D families are given in Table 8, but their metric
tensors are given for a selected set only in Table 9. The
others can be read off from the preceding tables. If the
holohedral point group is K1 ? K2, the matrix for the
metric tensor is the direct sum of the metric tensors of
the lower-dimensional groups. For example, in the 6D
family 6D 32 (i.e. number 32 in Table 8), the holohedral
point group is 4�4�?4m. The metric tensor for 4(4) can
be found in Table 4, and 4m is a two-dimensional group.
Therefore, the metric tensor for 4�4�?4m is

a 0 f g 0 0

a ÿg f 0 0

c 0 0 0

c 0 0

d 0

d

0BBBBBB@

1CCCCCCA: �15�

There are two types of new families in six dimensions.
First, those involving n-fold rotations for which the
Euler function ��n� has the value 6: the dihedral groups
of order 28 and 36. Second, the four R-irreducible
families. The latter are the families of the hypercubic
lattice (in the series 2D 4mm, 3D m�3m, 4D 23, 5D 32)
with holohedral point group of order 46 080 � 266!, the

rhombohedral lattice (in the series 2D 6mm, 3D bcc,
4D 21, 5D 31) of order 10 080 � 2� 7!, a lattice in the
series 2D 6mm, 4D 22 with holohedral point group of
order 10 368 � 3!� 123, and a symmetrized version of
lattice 6D 78 with holohedral point group of order 240
(Plesken & Hanrath, 1984), respectively.

The order in which the families are presented is
preferably such that families having properties in
common are grouped together. Unfortunately, there are
con¯icting criteria. There is no natural order. Because
there is a hierarchy: family ± system ± geometric point
group ± arithmetic point group ± space group, the
numbering could be based on this hierarchy and in that
case a numbering of the families is necessary. Simple
criteria are connected to the number of free parameters
in the metric tensor and to the order of the holohedral
point group. The most general lattice has the maximal
number of free parameters and the smallest holohedral
point group, whereas a lattice becomes increasingly
special if these numbers decrease and increase, respec-
tively.

This order is related, but not identical, to that based
on the reducibility of the arithmetic holohedral point
group. The holohedral point group is reducible if it is
equivalent to a direct sum of irreducible representations.
A distinction is necessary between equivalence via
rational basis transformations and that via real basis
transformations. The type of reducibility is given by
writing the dimension as the sum of the dimensions of
the irreducible components. In three dimensions, the
holohedral point group of a cubic lattice is 3-irreducible,
that of an orthorhombic lattice is 1� 1� 1-reducible. In
four dimensions, a lattice left invariant by a point group
generated by the transformation [8] is 2� 2-reducible if
real transformations are considered, but if rational
transformations only are allowed then it is irreducible.
Further, there is a difference between rational and
integer equivalence as well. In three dimensions, the
orthorhombic P lattice is fully 1� 1� 1-reducible if
integer matrices are used but the orthorhombic F lattice
is reducible but not fully reducible. However, this
difference becomes relevant only if centrings are
considered. This point will be discussed in a following
Report. An alternative ordering of the families takes
this reducibility as the starting point. Families with the
same dimensions as the irreducible components of the
holodral point groups are then grouped together. A
comparison of the two schemes is given in Fig. 2 for the
4D families.

The reducibility scheme lists the dimensions of the
irreducible components. This scheme can be re®ned as
follows. Suppose that the holohedral point group K can
be written as an external product K1 ? K2. If one gives
the reduction scheme for each of the components by
putting it in parentheses, the reduction scheme gives
more information. For example, in three dimensions, the
holohedral point groups of the triclinic, monoclinic and
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orthorhombic families are all 1� 1� 1-reducible.
Addition of the new information gives the reduction
scheme �1� 1� 1�, �1� 1� � 1 or 1� 1� 1, respec-
tively.

In the opinion of the Subcommittee, both schemes for
ordering the families have advantages and disadvan-
tages but there is a preference for the scheme chosen,
primarily because the number of free parameters in the
metric tensor plays an important roÃ le. Neither of the
schemes allows for a natural grouping of families in all
cases. Opgenorth et al. (1998) have recently introduced,
in a survey of algorithms used in the computer program
CARAT, an alternative grouping of crystal families in n
dimensions based on the decomposition pattern, group±
subgroup relations and metric tensors in their Section
2.4. The main issue in this section of the recommenda-
tions, however, is the choice of the standard basis.

A recommendation for the choice of the standard
basis is given in Table 4 for four dimensions, in Table 7

for ®ve dimensions, and in Table 9 for six dimensions. In
general, the chosen standard basis for a family is that of
a lattice with the highest symmetry. Sometimes this is
not the most convenient choice. In the 4D family No. 23,
there are two lattice systems, one is the hypercubic
system with holohedry of order 384, the other one with
holohedry of order 1152. The transformations of the
groups of the ®rst system have a very simple form when
described on a basis of the hypercubic lattice. In each
row and column, there is exactly one non-zero element.
If one chooses a basis in the other system this is not the
case. However, point groups that do not leave the
hypercubic lattice invariant are represented by non-
integer matrices if one uses the hypercubic basis.
Therefore, we propose using the hypercubic basis for all
point groups belonging to point-group system 23 1, and
the second basis (that of the lattice with holohedral
point group of order 1152) for the point groups in point
group system 23 2 only. The alternatives are given in
Table 5.

The full list of 4D families was given for the ®rst time
by Brown et al. (1978). Comparison of the numbering in
that publication with the numbering in Table 4 is given
in Table 6.

Recommendation 6. Recommended symbols for
families are the same as those for corresponding holo-
hedral point groups.

Recommendation 7. The family order is ®rst
according to the number of free parameters in the metric
tensor (in decreasing order), and second according to
the order of the holohedral point group (in increasing
order).

Recommendation 8. The recommended standard
basis for each family is chosen such that the reducibility
becomes maximally evident. Orthogonal invariant
subspaces are ordered according to decreasing orders of
the corresponding point groups. The conventional cell
for a lattice system is the cell of the corresponding
family. As an alternative, a special basis for each lattice
system in the family may be used. The recommended
bases and metric tensors for four-, ®ve- and six-dimen-
sional families are given in Tables 4, 7 and 9.

6. Relation with symmetries of aperiodic crystals

nD crystallography as such has become a topic for
research. On the other hand, nD space groups are widely
used for the description of aperiodic crystals. In this
section, we discuss the relation between the general
problem and the applications to aperiodic structures. It
should be noted that the use of nD crystallographic
groups is not the only method for describing aperiodic
structures. Colour symmetry or Fourier transforms in 3D
space are also used. However, these are strongly related
to a description in terms of higher-dimensional crystal-
lography. Here we only note one of the applications of

Fig. 2. The 23 four-dimensional families, in rows according to the order
of the holohedral point group, and in columns according to the
R-reducibility. Lines separate families with different numbers of
free parameters (indicated in the circles).
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Table 4. Standard metric tensors for the 23 four-dimensional families

Holohedral
Decomposition

No. Nfp² jHj³ point group Metric tensor Real Rational

1 10 2 14

a e f g

b h i

c j

d

0BB@
1CCA (1+1+1+1) (1+1+1+1)

2 7 4 �1?m

a e f 0

b h 0

c 0

d

0BB@
1CCA (1+1+1)+1 (1+1+1)+1

3 6 4 2?2

a e 0 0

b 0 0

c j

d

0BB@
1CCA (1+1)+(1+1) (1+1)+(1+1)

4 5 8 mm?2

a 0 0 0

b 0 0

c j

d

0BB@
1CCA 1+1+(1+1) 1+1+(1+1)

5 4 4 4(4)

a 0 f g

a ÿg f

c 0

c

0BB@
1CCA (2+2) (2+2)

6 4 6 6(6)

a ÿ 1
2 a f g

a ÿf ÿ g f

c ÿ 1
2 c

c

0BB@
1CCA (2+2) (2+2)

7 4 16 mmmm

a 0 0 0

b 0 0

c 0

d

0BB@
1CCA 1+1+1+1 1+1+1+1

8 4 16 4mm?2

a 0 0 0

a 0 0

c j

d

0BB@
1CCA 2+(1+1) 2+(1+1)

9 4 24 6mm?2

a ÿ 1
2 a 0 0

a 0 0

c j

d

0BB@
1CCA 2+(1+1) 2+(1+1)

10 3 8 4m(4m)

a 0 f 0

a 0 f

c 0

c

0BB@
1CCA (2+2) (2+2)

11 3 12 6m(6m)

a ÿ 1
2 a f ÿ 1

2 f

a ÿ 1
2 f f

c ÿ 1
2 c

c

0BB@
1CCA (2+2) (2+2)

12 3 32 4mm?mm

a 0 0 0

a 0 0

c 0

d

0BB@
1CCA 2+1+1 2+1+1

13 3 48 6mm?mm

a ÿ 1
2 a 0 0

a 0 0

c 0

d

0BB@
1CCA 2+1+1 2+1+1

14 2 16 8m(83m)

a e 0 ÿe

a e 0

a e

a

0BB@
1CCA (2+2) 4



774 SYMBOLS FOR POINT-GROUP TRANSFORMATIONS etc.

the groups discussed in this Report. We do not speci®-
cally recommend this method, but simply draw attention
to the fact that the symbols used by many crystal-
lographers for quasiperiodic systems are closely related
to those that arise naturally for nD groups with a
reducible point group.

A lattice-periodic function in n variables gives an
aperiodic structure if the space is intersected by an
oblique subspace. Consider a function f �x1; x2� of two
variables which is periodic in its two arguments:
f �x1 � 1; x2� � f �x1; x2 � 1� � f �x1; x2�. Take two real
numbers �1 and �2 such that �1=�2 is irrational and
de®ne a function g�x� of one variable through
g�x� :� f ��1x; �2x�. Its Fourier series follows from that
of f �x1; x2�:

f �x1; x2� �
P

h1;h2

c�h1; h2� exp�2�i�h1x1 � h2x2��

! g�x� � P
h1;h2

c�h1; h2� exp�2�i�h1�1 � h2�2�x�;

integer hi:

This expression is a special case of a quasiperiodic
function

��~r � � P
~k2M�

�̂�~k� exp�i~k � ~r �; �16�

where the set M� is de®ned as

M� � ~k ~k �Pn
i�1

hi~a
�
i

���� ��
: �17�

Table 4 (cont.)

Holohedral
Decomposition

No. Nfp² jHj³ point group Metric tensor Real Rational

15 2 20 10m(103m)

a e f f

a e f

a e

a

0BB@
1CCA 2�e� f � � a � 0 (2+2) 4

16 2 24 12m(125m)

a e 1
2 a 0

a e 1
2 a

a e

a

0BB@
1CCA (2+2) 4

17 2 64 4mm?4mm

a 0 0 0

a 0 0

c 0

c

0BB@
1CCA 2+2 2+2

18 2 96 6mm?4mm

a ÿ 1
2 a 0 0

a 0 0

c 0

c

0BB@
1CCA 2+2 2+2

19 2 96 m�3m?m

a 0 0 0

a 0 0

a 0

d

0BB@
1CCA 3+1 3+1

20 2 144 6mm?6mm

a ÿ 1
2 a 0 0

a 0 0

c ÿ 1
2 c

c

0BB@
1CCA 2+2 2+2

21 1 240 ±

a 1
2 a 1

2 a 1
2 a

a 1
2 a 1

2 a

a 1
2 a

a

0BB@
1CCA 4 4

22 1 288 ±

a ÿ 1
2 a 0 0

a 0 0

a ÿ 1
2 a

a

0BB@
1CCA 4 4

23 1 1152§ ±

a 0 0 0

a 0 0

a 0

a

0BB@
1CCA 4 4

² Nfp � number of free parameters. ³ jHj � order of the maximal holohedral point group. § The order of the holohedral point group of the
lattice spanned by the standard basis is 384.
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If n is larger than the dimension of the space, the
function is not lattice periodic but is quasiperiodic. The
set M� is not a reciprocal lattice, but is the projection
of an nD reciprocal lattice ��. A vector ~k in M� can
be written as the projection ~k � �~ks and the nD
reciprocal-lattice vector ~ks is a linear combination of
basis vectors: ~ks �

P
hi~a
�
is. On the other hand, if the

diffraction pattern has intensities that are the square of
the modulus of a function �̂�~k� on a set M�, then there is
an nD periodic function ��~rs� that corresponds to the nD
Fourier transform:

��~rs� :�
P
~ks2��

�̂��~ks� exp�i~ks � ~rs�: �18�

This function has lattice periodicity in n dimensions and
the lattice � has �� as its reciprocal lattice. Moreover, as
can be seen from the de®nition, the restriction of the nD
function to the hyperplane on which the reciprocal
lattice is projected is just the starting function ��~r �.
Consequently, a quasiperiodic function is the restriction
of an nD lattice periodic function to physical space, and

the number of dimensions is equal to the number of
indices hi necessary for indexing the diffraction pattern.

Because there is a one-to-one correspondence
between the function in physical space and the function
in higher-dimensional space, which is essentially given
by its value in the unit cell, the symmetry of the quasi-
periodic structure can be identi®ed with that of the
higher-dimensional structure. This symmetry group is an
nD space group, with an associated nD point group.
Because the construction is based on a projection from
higher-dimensional space, it is intuitively clear that
symmetry operators cannot mix the physical space and
the space of the additional dimensions. This statement
can be made rigorous. It implies that the point groups
are necessarily R-reducible. A point group then consists
of pairs (R;R?) of an orthogonal transformation in
physical space and another in the additional space. The
elements R form a ®nite point group KE and the
elements R? a ®nite point group K?. Therefore, the
point groups for aperiodic structures are subdirect
products of KE and K?.

The literature contains hundreds of examples of such
aperiodic crystals. Two follow:

Table 5. Alternatives for four-dimensional family 23

Order Generators holohedral point group Metric tensor

384

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

0BB@
1CCA

0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1

0BB@
1CCA

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

0BB@
1CCA

a 0 0 0

a 0 0

a 0

a

0BB@
1CCA

ÿ1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0BB@
1CCA

1152

1 0 0 0

0 0 0 ÿ1

0 1 1 1

0 ÿ1 0 0

0BB@
1CCA

0 1 1 1

0 0 0 ÿ1

1 0 0 0

ÿ1 0 1 1

0BB@
1CCA

0 0 1 0

1 0 ÿ1 ÿ1

0 1 1 1

0 0 0 ÿ1

0BB@
1CCA

a 1
2 a 0 ÿ 1

2 a

a 1
2 a 0

a 1
2 a

a

0BB@
1CCA

0 0 0 1

1 1 0 ÿ1

ÿ1 0 1 1

1 0 0 0

0BB@
1CCA

1 1 0 ÿ1

0 0 1 1

0 0 ÿ1 0

0 1 1 0

0BB@
1CCA

The generators of the group of order 1152 are not all integral on the ®rst lattice basis.

Table 6. Correspondence between the numbers of the families in Table 4 and those in Brown et al. (1978): BBNWZ

Table 4 1 2 3 4 5 6 7 8
BBNWZ I II III IV VIII IX V VI

Table 4 9 10 11 12 13 14 15 16
BBNWZ VII XII XIII X XI XVIII XIX XX

Table 4 17 18 19 20 21 22 23
BBWNZ XIV XV XVII XVI XXII XXI XXIII
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Table 7. Families in ®ve dimensions

Holohedral
Decomposition

No. point group Order Nfp Metric tensor Real Rational

1 �15 2 15

a f j m p

b g k n

c h l

d i

e

0BBBB@
1CCCCA (1+1+1+1+1) (1+1+1+1+1)

2 �14?m 4 11

a f j m 0

b g k 0

c h 0

d 0

e

0BBBB@
1CCCCA (1+1+1+1)+1 (1+1+1+1)+1

3 �13?2 4 9

a f j 0 0

b g 0 0

c 0 0

d i

e

0BBBB@
1CCCCA (1+1+1)+(1+1) (1+1+1)+(1+1)

4 �13?mm 8 8

a f j 0 0

b g 0 0

c 0 0

d 0

e

0BBBB@
1CCCCA (1+1+1)+1+1 (1+1+1)+1+1

5 2?2?m 8 7

a f 0 0 0

b 0 0 0

c h 0

d 0

e

0BBBB@
1CCCCA (1+1)+(1+1)+1 (1+1)+(1+1)+1

6 4mm?�13 16 7

a 0 0 0 0

a 0 0 0

c h l

d i

e

0BBBB@
1CCCCA 2+(1+1+1) 2+(1+1+1)

7 6mm?�13 24 7

a ÿ 1
2 a 0 0 0

a 0 0 0

c h l

d i

e

0BBBB@
1CCCCA 2+(1+1+1) 2+(1+1+1)

8 2?mmm 16 6

a f 0 0 0

b 0 0 0

c 0 0

d 0

e

0BBBB@
1CCCCA (1+1)+1+1+1 (1+1)+1+1+1

9 4�4�?m 8 5

a 0 j m 0

a ÿm j 0

c 0 0

c 0

e

0BBBB@
1CCCCA (2+2)+1 (2+2)+1

10 6�6�?m 12 5

a ÿ 1
2 a j m 0

a ÿjÿm j 0

c ÿ 1
2 c 0

c 0

e

0BBBB@
1CCCCA (2+2)+1 (2+2)+1

11 mmmmm 32 5

a 0 0 0 0

b 0 0 0

c 0 0

d 0

e

0BBBB@
1CCCCA 1+1+1+1+1 1+1+1+1+1
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Table 7 (cont.)

Holohedral
Decomposition

No. point group Order Nfp Metric tensor Real Rational

12 4mm?2?m 32 5

a 0 0 0 0

a 0 0 0

c h 0

d 0

e

0BBBB@
1CCCCA 2+(1+1)+1 2+(1+1)+1

13 6mm?2?m 48 5

a ÿ 1
2 a 0 0 0

a 0 0 0

c h 0

d 0

e

0BBBB@
1CCCCA 2+(1+1)+1 2+(1+1)+1

14 4m�4m�?m 16 4

a 0 j 0 0

a 0 j 0

c 0 0

c 0

e

0BBBB@
1CCCCA (2+2)+1 (2+2)+1

15 6m�6m�?m 24 4

a ÿ 1
2 a j ÿ 1

2 j 0

a ÿ 1
2 j j 0

c ÿ 1
2 c 0

c 0

e

0BBBB@
1CCCCA (2+2)+1 (2+2)+1

16 4mm?mmm 64 4

a 0 0 0 0

a 0 0 0

c 0 0

d 0

e

0BBBB@
1CCCCA 2+1+1+1 2+1+1+1

17 6mm?mmm 96 4

a ÿ 1
2 a 0 0 0

a 0 0 0

c 0 0

d 0

e

0BBBB@
1CCCCA 2+1+1+1 2+1+1+1

18 m�3m?2 96 4

a 0 0 0 0

a 0 0 0

a 0 0

d i

e

0BBBB@
1CCCCA 3+(1+1) 3+(1+1)

19 8m�83m�?m 32 3

a f 0 ÿf 0

a f 0 0

a f 0

a 0

e

0BBBB@
1CCCCA (2+2)+1 4+1

20 10m�103m�?m 40 3

a f j j 0

a f j 0

a f 0

a 0

e

0BBBB@
1CCCCA 2�f � j� � a � 0 (2+2)+1 4+1

21 12m�125m�?m 48 3

a f 1
2 a 0 0

a f 1
2 a 0

a f 0

a 0

e

0BBBB@
1CCCCA (2+2)+1 4+1

22 4mm?4mm?m 128 3

a 0 0 0 0

a 0 0 0

c 0 0

c 0

e

0BBBB@
1CCCCA 2+2+1 2+2+1
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(i) K2SeO4 has a modulated phase in a certain
temperature region. The structure in this phase can be
described as derived from a basic structure with space

group Pcmn via a periodic displacement modulation
with wavevector  ~c�. The diffraction pattern needs four
indices, because a diffraction vector can be written as

Table 7 (cont.)

Holohedral
Decomposition

No. point group Order Nfp Metric tensor Real Rational

23 6mm?4mm?m 192 3

a ÿ 1
2 a 0 0 0

a 0 0 0

c 0 0

c 0

e

0BBBB@
1CCCCA 2+2+1 2+2+1

24 m�3m?mm 192 3

a 0 0 0 0

a 0 0 0

a 0 0

d 0

e

0BBBB@
1CCCCA 3+1+1 3+1+1

25 6mm?4mm?m 288 3

a ÿ 1
2 a 0 0 0

a 0 0 0

c 0 0

c 0

e

0BBBB@
1CCCCA 2+2+1 2+2+1

26 m�3m?4mm 384 2

a 0 0 0 0

a 0 0 0

a 0 0

d 0

d

0BBBB@
1CCCCA 3+2 3+2

27 ± 480 2

a 1
2 a 1

2 a 1
2 a 0

a 1
2 a 1

2 a 0

a 1
2 a 0

a 0

e

0BBBB@
1CCCCA 4+1 4+1

28 m�3m?6mm 576 2

a 0 0 0 0

a 0 0 0

a 0 0

d ÿ 1
2 d

d

0BBBB@
1CCCCA 3+2 3+2

29 ± 576 2

a ÿ 1
2 a 0 0 0

a 0 0 0

a ÿ 1
2 a 0

a 0

e

0BBBB@
1CCCCA 4+1 4+1

30 ± 768 2

a 0 0 0 0

a 0 0 0

a 0 0

a 0

e

0BBBB@
1CCCCA 4+1 4+1

31 ± 1440 1

a 1
2 a 1

2 a 1
2 a 1

2 a

a 1
2 a 1

2 a 1
2 a

a 1
2 a 1

2 a

a 1
2 a

a

0BBBB@
1CCCCA 5 5

32 ± 3840 1

a 0 0 0 0

a 0 0 0

a 0 0

a 0

a

0BBBB@
1CCCCA 5 5
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Table 8. Families in six dimensions

No. Nfp jHj R-reducible Symbol

1 21 2 (1+1+1+1+1+1) 16

2 16 4 (1+1+1+1+1)+1 15?m
3 13 4 (1+1+1+1)+(1+1) 14?2
4 12 4 (1+1+1)+(1+1+1) 13?13

5 12 8 (1+1+1+1)+1+1 14?mm
6 11 16 2+(1+1+1+1) 4m?14

7 11 24 2+(1+1+1+1) 6m?14

8 10 8 (1+1+1)+(1+1)+1 13?2?m
9 9 4 (2+2+2) 4(4)(4)

10 9 6 (2+2+2) 6(6)(6)
11 9 8 (1+1)+(1+1)+(1+1) 2?2?2
12 9 16 (1+1+1)+1+1+1 13?mmm
13 8 16 (1+1)+(1+1)+1+1 2?2?mm
14 8 32 2+(1+1+1)+1 4m?13?m
15 8 48 2+(1+1+1)+1 6m?13?m
16 7 8 (2+2)+(1+1) 4(4)?2
17 7 12 (2+2)+(1+1) 6(6)?2
18 7 32 (1+1)+1+1+1+1 2?mmmm
19 7 32 2+(1+1)+(1+1) 4m?2?2
20 7 48 2+(1+1)+(1+1) 6m?2?2
21 7 96 3+(1+1+1) m�3m?13

22 6 8 (2+2+2) 4m(4m)(4m)
23 6 12 (2+2+2) 6m(6m)(6m)
24 6 16 (2+2)+1+1 4(4)?mm
25 6 16 (2+2)+(1+1) 4m(4m)?2
26 6 24 (2+2)+1+1 6(6)?mm
27 6 24 (2+2)+(1+1) 6m(6m)?2
28 6 64 1+1+1+1+1+1 mmmmmm
29 6 64 2+(1+1)+1+1 4m?2?mm
30 6 96 2+(1+1)+1+1 6m?2?mm
31 5 32 (2+2)+1+1 4m(4m)?mm
32 5 32 (2+2)+2 4(4)?4m
33 5 32 [2+2]+(1+1) 8m�83m�?2
34 5 40 [2+2]+(1+1) 10m�103m�?2
35 5 48 (2+2)+1+1 6m(6m)?mm
36 5 48 (2+2)+2 4(4)?6m
37 5 48 (2+2)+2 6(6)?4m
38 5 48 [2+2]+(1+1) 12m�125m�?2
39 5 72 (2+2)+2 6(6)?6m
40 5 128 2+1+1+1+1 4m?mmmm
41 5 128 2+2+(1+1) 4m?4m?2
42 5 192 2+1+1+1+1 6m?mmmm
43 5 192 2+2+(1+1) 6m?4m?2
44 5 192 3+(1+1)+1 m�3m?2?m
45 5 288 2+2+(1+1) 6m?6m?2
46 4 64 (2+2)+2 4m(4m)?4m
47 4 64 [2+2]+1+1 8m(83m)?mm
48 4 80 [2+2]+1+1 10m�103m�?mm
49 4 96 [2+2]+1+1 12m�125m�?mm
50 4 96 (2+2)+2 4m�4m�?6m
51 4 96 (2+2)+2 6m�6m�?4m
52 4 144 (2+2)+2 6m�6m�?6m
53 4 256 2+2+1+1 4m?4m?mm
54 4 384 2+2+1+1 6m?4m?mm
55 4 384 3+1+1+1 m�3m?mmm
56 4 480 4+(1+1) [4D_21]?2
57 4 576 2+2+1+1 6m?6m?mm
58 4 576 4+(1+1) [4D_22]?2
59 4 768 4+(1+1) [4D_23]?2
60 3 28 [2+2+2] 14m(14m)(14m)
61 3 36 [2+2+2] 18m(18m)(18m)
62 3 48 (3+3) m�3m�m�3m�
63 3 128 [2+2]+2 8m�83m�?4m
64 3 160 [2+2]+2 10m�103m�?4m
65 3 192 [2+2]+2 12m�125m�?4m
66 3 192 [2+2]+2 8m(83m)?6m
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~k � h ~a� � k ~b� � l ~c� �m� ~c��: �19�

The lattice periodic function in four dimensions has a
point group generated by the pairs (mx; 1), (my; 1) and
(mz;ÿ1). Such a point group is the subdirect product of
the 3D point group mmm and the 1D point group m. In
the recommended notation, it is the group mm?2. In the
literature for modulated structures, it usually has the
symbol mmm�11�1�.

(ii) The quasicrystalline phase of AlMnPd has a
diffraction pattern with icosahedral symmetry, requiring
six indices. The number of dimensions for the space
group is hence n � 6. The point group is the subdirect
product of the icosahedral point groups 5�3m in the
physical and the 3D additional space. It is generated by
pairs 5�52), �3��3� and m(m). Therefore, the recommended
notation for the point group is 5�3m�52 �3m�. In the
literature, it is generally denoted by 5�3m, which is
shorter but is also ambiguous because it is the symbol
for a 3D point group and it suppresses important
information as the components in additional space are
not indicated. The nomenclature for aperiodic systems
can therefore bene®t from the more general approach
discussed in this Report in terms of nD crystallography.
On the other hand, the notation schemes are not so
different that it is dif®cult to change from one to the
other.

7. Conclusions and recommendations

Recommendations for the symbols of n-dimensional
orthogonal transformations, n-dimensional geometric
crystal classes, the order of n-dimensional families, and
the standard bases in four, ®ve and six dimensions are
given at the end of xx2, 3 and 4. Speci®c recommenda-
tions for dimensions up to six are given in the tables.

The recommendations are summarized as follows.
(I) An orthogonal transformation of ®nite order that

can be written after a suitable real basis transformation
as the direct sum

S �
Mr

i�1

cos 2�pi=qi ÿ sin 2�pi=qi

sin 2�pi=qi cos 2�pi=qi

� �
�
Mm

j�1

aj �
Ml

k�1

bk;

aj � ÿ1; bk � 1; 2r�m� l � n; �20�
should be written in full as

q
p1
1 q

p2
2 22 . . . �21�

with m=2 2's when m is even,

d
c1

1 d
c2
2 . . . 22 . . . �22�

with �mÿ 1�=2 2's when m is odd, and with
ci=di � pi=qi � 1

2 �mod 1�, but it is

1n �23�

Table 8 (cont.)

No. Nfp jHj R-reducible Symbol

67 3 240 [2+2]+2 10m�103m�?6m
68 3 288 [2+2]+2 12m�125m�?6m
69 3 512 2+2+2 4m?4m?4m
70 3 768 2+2+2 6m?4m?4m
71 3 768 3+2+1 m�3m?4m?m
72 3 960 4+1+1 [4D_21]?mm
73 3 1152 2+2+2 6m?6m?4m
74 3 1152 3+2+1 m�3m?6m?m
75 3 1152 4+1+1 [4D_22]?mm
76 3 1536 4+1+1 [4D_23]?mm
77 3 1728 2+2+2 6m?6m?6m
78 2 120 [3+3] 5�3m�52 �3m�
79 2 1920 4+2 [4D_21]?4m
80 2 2304 3+3 m�3m?m�3m
81 2 2304 4+2 [4D_22]?4m
82 2 2880 4+2 [4D_21]?6m
83 2 2880 5+1 [5D_31]?m
84 2 3072 4+2 [4D_23]?4m
85 2 3456 4+2 [4D_22]?6m
86 2 4608 4+2 [4D_23]?6m
87 2 7680 5+1 [5D_32]?m
88 1 240 6 [6D_88]
89 1 10080 6 [6D_89]
90 1 10368 6 [6D_90]
91 1 46080 6 [6D_91]

Z-reducibility is indicated by [ ]: �2� 2� is �2� 2�-R-reducible, but 4D Z-irreducible. Symbols for R-reducible groups have not yet been settled for
n > 3 and are indicated as [nD_No.].

Table 8 (cont.)
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when l � n (only eigenvalues �1) and

1m; �24�
when m � n (only eigenvalues ÿ1). The order is such
that

qi � qi�1 � . . . ; pi � pi�1 if qi � qi�1: �25�
(II) For consistency with current practice, m should be

used for 11, 2 is used exceptionally instead of 12, and �1 is
used instead of 13.

(III) In the case of a crystallographic orthogonal
transformation, a short form is obtained by combining
conjugate blocks with the same q into the symbol �q�.
This represents the sequence

�q� � qp1 . . . qpe ; �26�
where p1; . . . ; pe are the ��q�=2 integers that are
coprime with q and smaller than q=2.

(IV) The symbol does not depend on the number of
eigenvalues �1. However, if there are only eigenvalues

Table 9. Metrical tensors for some six-dimensional families

No. Standard tensor No. Standard tensor

9

a 0 d ÿg e h

a g d ÿh e

b 0 f i

b ÿi f

c 0

c

0BBBBBB@

1CCCCCCA 10

a ÿ 1
2 a d ÿdÿ g e h

a g d ÿeÿ h e

b ÿ 1
2 b f i

b ÿf ÿ i f

c ÿ 1
2 c

c

0BBBBBB@

1CCCCCCA

22

a 0 d 0 e 0

a 0 d 0 e

b 0 f 0

b 0 f

c 0

c

0BBBBBB@

1CCCCCCA 23

a ÿ 1
2 a d ÿ 1

2 d e ÿ 1
2 e

a ÿ 1
2 d d ÿ 1

2 e e

b ÿ 1
2 b f ÿ 1

2 f

b ÿ 1
2 f f

c ÿ 1
2 c

c

0BBBBBB@

1CCCCCCA

60

a b c d d c

a b c d d

a b c d

a b c

a b

a

0BBBBBB@

1CCCCCCA with a� 2b� 2c� 2d � 0

61

a b c ÿ 1
2 a ÿbÿ c ÿbÿ c

a b c ÿ 1
2 a ÿbÿ c

a b c ÿ 1
2 a

a b c

a b

a

0BBBBBB@

1CCCCCCA 62

a 0 0 c 0 0

a 0 0 c 0

a 0 0 c

b 0 0

b 0

b

0BBBBBB@

1CCCCCCA

78

a b b b b b

a b ÿb ÿb b

a b ÿb ÿb

a b ÿb

a b

a

0BBBBBB@

1CCCCCCA 88

a 2
5 a 2

5 a 2
5 a 2

5 a 2
5 a

a 1
5 a ÿ 1

5 a ÿ 1
5 a 1

5 a

a 1
5 a ÿ 1

5 a ÿ 1
5 a

a 1
5 a ÿ 1

5 a

a 1
5 a

a

0BBBBBB@

1CCCCCCA

89

a 1
2 a 1

2 a 1
2 a 1

2 a 1
2 a

a 1
2 a 1

2 a 1
2 a 1

2 a

a 1
2 a 1

2 a 1
2 a

a 1
2 a 1

2 a

a 1
2 a

a

0BBBBBB@

1CCCCCCA 90

a ÿ 1
2 a 0 0 0 0

a 0 0 0 0

a ÿ 1
2 a 0 0

a 0 0

a ÿ 1
2 a

a

0BBBBBB@

1CCCCCCA

91

a 0 0 0 0 0

a 0 0 0 0

a 0 0 0

a 0 0

a 0

a

0BBBBBB@

1CCCCCCA
The other metrical tensors are either the most general with 21 independent components or can be written as the direct sum of independent tensors
of lower dimensions.
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�1 and no others, then the transformation should be
denoted by 1n. If it is desirable to indicate explicitly the
dimension of the transformation as many digits 1 may be
added as there are eigenvalues equal to �1.

(V) Symbols for geometric crystal classes are symbols
for representative point groups.The following symbols
should be used in point groups that are the subdirect
product of point groups in at most three dimensions.

(i) A point group in n dimensions that can be written
as the direct product of point groups acting in mutually
perpendicular subspaces is called an external product
of K1;K2; . . . and is denoted by K1 ? K2 ? . . .. A
subdirect product of K1;K2; . . . is a subgroup of the
external product K1 ? K2 ? . . ..

(ii) If the point group is reducible into block form
with blocks of dimension three or less and not an
external product of point groups, the following symbols
are chosen.

For convenience, we consider the case where the
point group K is a subgroup of K1 ? K2. Generalization
to the case with more components is straightforward.
The symbol consists of a pair H1�H2�, where Hi is the
symbol for a two- or three-dimensional point group Ki

or such a symbol with digits 1 added so that (a) the
number of alphanumeric characters is the same in both
symbols, (b) the mth symbol in H1 is associated with the
mth symbol in H2, and (c) the elements of Hi that are
paired with a digit 1 in the other symbol generate an
invariant subgroup.

(iii) Simpli®ed symbols are chosen for the groups K
that are the direct product of a subgroup H of index two
and the central inversion 1n. Such a group is denoted by
H � 1n.

(VI) Recommended symbols for families are the same
as those for corresponding holohedral point groups.

(VII) The family order is ®rst according to the
number of free parameters in the metric tensor (in
decreasing order), and second according to the order of
the holohedral point group (in increasing order).

(VIII) The standard basis for each family is chosen
such that the reducibility becomes maximally evident.
Orthogonal invariant subspaces are ordered according
to decreasing orders of the corresponding point groups.
The conventional cell for a lattice system is the cell of
the corresponding family. As an alternative, a special
basis for each lattice system in the family may be used.
The recommended bases and metric tensors for four-,

®ve- and six-dimensional families are given in Tables
4, 7 and 9.

We thank Subcommittee advisors G. Chapuis, N. D.
Mermin, R. Veysseyre and E. J. W. Whittaker for useful
comments. We thank, in particular, former Subcom-
mittee member H. Wondratschek for many important
contributions.
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