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Belgaumkar, Proc. Ind. Nat. Sei. Acad. , 1973, 39, 95), the
Gram-Charlier Series (Shmueli and Wilson, Acta Cryst, 1981,
A37,342) and Cauchy distribution (Mitra and Das, Acta Cryst,
1989, A45, 314) were ushered in. Meanwhile Hauptman and
Karle (Acta Cryst, 1952, 5, 48) and Karle and Hauptman (Acta
Cryst, 1953, 6, 31D invoked, for this purpose, the theory of
random walk developed by Rayleigh. They showed that, for a
centrosymmelric crystal, the probability density function P

for the structure factor F becomes

Py = (27()“‘{f\)/\(x)cos}:(x)dx:\ (@B
]

N/m
where A(x):]._[q(flx) with m = symmetry numbers

;=0
and q(f,x):l[(, pe)eos(efx)de
Again, shmueli, Weiss, Kieffer and Wilson (Acta Cryst, 1984.
A40, 651-666) expressed P(F) as a Fourier series

PR = (29)-1{1 + 2 3} A(m)cos (2rmF/s) | )

m=1
N/m E
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where A(m)= Tl Yo (2mmi;/s) and s= S_Jf,
=

1
when Jo(R) signifies the Bessel function of first kind and order
zero with argument R and f; being the atomiic scattering factor of
the jth atom.

Changing over to E = F/( Z £2)1% eq. (2) becomes
)

P(E) = {1 4+ 22 Alm)cos (2rmak) } (3

m=1
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For equal atom case eq. (3) is given by

P(E) = N"””{l + ZEA(nl)coéZKmEN_”z} 1)

me=]
when A (m) reduces to [Jo(2rmN7' ]2
Changing from the standardised amplitude E to the correspond-
ing intensity Z = E?, eq. (4) may be written as
p(2) = N~Z=[1 4+ 23] Alm)coszrmZAN"V2 ) (5)
m=1

Let the cumulative probability function Q(z) be
7

Q) ZJp(z)dz
0
Then

2
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where B(m):/\(m)‘/zﬂ.ml\]—-l/z ter e rae e (7))
A plot of Q (2) against z, based on eq. (6) and (7) for different
values of N shows that for N = 60. Q (2) is very nearly equal to
the Gaussian distribution (Howells, Philips and Rogers, Acta
Cryst. » 1950, 3, 210) and that for N = 30 corresponds very
closely to the Cauchy bicentric case (Mitra and Das, Ind. .
Phys. , 1992, 66A (3). 375). Relations with other distributions

are under study.
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In its normal usage by crystallographers the form factor of an atom
describes the scattering by an isolated spherical atom of the
incident x radiation. Using this single formalism it has been
possible to solve a wide range of problems in crystallography. The
formalism works equally as well for powdered as for single crystal
samples.

It does, however, have deficiencies, and these arise from the
assumption that each atom scatters independently of its
neighbours. The existence of XAFS and XANES demonstrates that
this simplistic assumption fails near absorption edges. This
modulation due to the interaction of the ejected photo-electrons
with the crystalline structure is, however, a small modulation to
the total scattering power of the atom. For most atomic species the
overall scattering by an atom in the neighbourhood is
approximated well by theory (Creagh & McAuley, 1992,
International Tables for Crystallography, Vol. C, Section 4.2.6) as
seen in Figure 1.

The difference in scattering is due to XAFS and may be accounted
for by the scalar addition of the XAFS amplitude calculated using
Rehr's FEFF Code.

For most materials no angular distribution of scattering is
observed: the atomic form factor behaves at if it were a scalar
quality. However, in some types of crystal dichroic effects occur,
and these may be explained by the addition of a second rank tensor
to the scalar form factor tensor (Templeton & Templeton, 1986,
Acta Cryst., Ad2, 478-86). This second rank tensor has its elements
determined by the crystalline charge distributions of the dichroic
crystals under investigation.

For some rare earth magnetic materials such as holmium and
erbium, magnetic scattering can give rise to additional points in
the reciprocal lattice, and the position and dynamics of these
lattice points can be described in terms of a fourth order tensor as
shown by Blume (Blume, 1992, ICAS Meeting, Malente).

This paper will discuss the tensor form of the atomic scattering
factor formalism and its use in solving problems in
crystallography.
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Figure 1. Comparison of a varicty of experimental
results with theory.
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