$\mathrm{Ga}_{2} \mathrm{O}_{6}\left[\mathrm{PO}_{4}\right] 3^{\circ}$ The dimers stringed on an two－ hold axes form continuous chains along the z axis in which the filled octahedra and the emp－
ty trigonal prisins are situated alternate－ ly．All the structure consists of a totality of indicated chains connected with each other by octahedra forming unique framework of the composition $\mathrm{Ga}\left(\mathrm{PO}_{4}\right)_{2}$ with large－scale spa－
ces．It is not difficult to notice that the obtained motive as composed from Ga－octahed－ ra and PO_{4}－tetrahedra carries a negative
charge equal to－ 3 for compensation of which positive cations are required．The crystal chemistry analysis of interatomic distances indicates that such positive cations can be only protons transforming free terminal oxy－ gen atoms of phosphate groups into hydroxylic ions．Thus，by taking into account the hydro－ gen atoms and the water molecules the pre－ sence of which in the structure is also con－ firmed by DT analysis and which are statisti－ cally arranged in the above indicated vacan－ cies，the structural formula can be expressed as $\mathrm{GaH}_{3}\left(\mathrm{PO}_{4}\right)_{2} \quad 2,5 \quad \mathrm{H}_{2} \mathrm{O}$ 。

08．2－59
THE CRYSTAL STRUCTURE OF SODIUM AND HOLMIUM BORATE。 BY G．G．Jafarov，G．K。Abdulla－ yev．The Institute of Inorganic and Physical Chemistry of the Academy of Sciences，Azerbai－ jan SSR，Baku，USSR．
Sodium and holmium borate $\mathrm{NaHo}\left[\mathrm{BO}_{2}(\mathrm{OH})\right] \mathrm{OH}$ was
obtained under hydrothermal conditions in the system $\mathrm{HO}_{2} \mathrm{O}_{3}-\mathrm{Na}_{2} \mathrm{O}-\mathrm{H}_{2} \mathrm{O}$ at 400 C ．The crystals are
transparent and are of lemon－yellow colour． The habitus of the crystals changes from shortly prismatic to isometric．The crystal structure was determined by single－crystal X－ ray analysis（diffractometer，Mo radiation， 890 reflections，least squares refinement with anisotropic approximation， $\mathrm{R}=0,083$ ）．The cell dimensions are：$a=5,142(2), b=6,434(4)$ ，$c=$ $6,155(3) \AA, \beta=114,7(2), Z^{\prime}=2, d x=5,07 \mathrm{~g} / \mathrm{cm}^{3}$, space group PR $/$ In．The structure has been
solved by the heavy atom method．The coordina－ tions of Ho atoms have been determined from Patterson map．The localization of the remain－ ing atoms（Na， 0 and B）was carried out from Fourier and difference electron density syn－ thesis．The crystal structure of sodium and holmium borate consists of isolated $\left[\mathrm{BO}_{2}(\mathrm{OH}) 2^{3-}\right.$ tetrahedra（ $B-0,1,480-1,524 \AA$ ）and coordina－ tion polyhedra of metallic cations．The sodium cations are inside the distorted bicapped tri－ gonal prisms formed by two 0 atoms and six $O H$ groups（Na－0 2，204－2，613A）．The holmium ca－ tions are also inside the distorted eight coor－ dinated polyhedra formed by four oxygen atoms and four OH groups．（Ho－ $02,322-2,686, \AA$ ）Na
and Ho form zigzag chains along the axis b being connected through the general rib with the nearest symmetrically equivalent polyhed－ ra．Such chains of HO －polyhedra form step （zigzag）layers，parallel to planes（004），be－ ing connected by general oxygen summits bet－ ween them．The layers of Ho－polyhedra being associated by general summits and ribs of Na－ polyhedra，B－tethedra and hydrogen bonds bet－ ween them，form the framework structure of so－ dium and holmium borates．

08．2－60 STRUCTURAL ANALYSIS OF SUBSTITUTED BARIUM HOLLANDITES．By R．W．Cheary，J． Kwiatkowska and J．Hodge．School of Physics \＆ Materials，New South Wales Institute of Technology，Sydney，N．S．W．2007，Australia．

The structures of a number of polycrystalline barium hollandites have been determined by x－ray and neutron diffraction using the Rietveld method．The purpose of this work is to establish the structural conditions required for the successful immobilisation of radioactive waste within this group of compounds．In cesium substituted hollandites
（viz $\left[\mathrm{Ba}_{\mathrm{x}} \mathrm{Cs}_{y}\right]\left[\mathrm{Al}_{2 x+y} \mathrm{Ti}_{8-2 \mathrm{x}-\mathrm{y}}\right]_{16}$ ）the structural parameters for titanium，aluminium and oxygen do not change significantly with the level of cesium substitution．The only significant change occurs in the z parameter which defines the average Cs／Ba position． This increases with the level of Cs substitution incicating that these ions tend to occupy a more central location with respect to their coordinating oxygen ions．An analysis of the （Cs／Ba）－0 bond length suggests a possible limit of structural stability corresponding to 0.25 cesium ions per unit cell．Electron microprobe results indicate that the level of cesium substitution is constrained by the condition that the total volume occupied per unit cell the cesium and barium remains substantially constant．Barium hollandites containing varying proportions and types of 3^{+}ions on the octahedral sites have also been examined （viz $\mathrm{Ba}_{\mathrm{x}}\left[\mathrm{M}_{2 \mathrm{x}} \mathrm{Ti}_{8-2 \mathrm{x}}\right] \mathrm{O}_{16}, \mathrm{M}=\mathrm{Al}, \mathrm{Ga}, \mathrm{Fe}$ and Ti to determine how these affect the size of the barium site．
08.2-61 THE CRYSTAL STRUCTURES OF K AND Sb (III) SIIICATES, $\mathrm{K}_{2} \mathrm{Sb}(\mathrm{OH})\left(\mathrm{Si}_{4} \mathrm{O}_{10}\right)$, AND $\mathrm{K}_{2} \mathrm{Sb}_{2} \mathrm{O}\left(\mathrm{Si}_{6} \mathrm{O}_{15}\right)$. By V.V.Bakakin, V.P.Balko, Institute of Inorganic Chemistry, Sib.Dept. of the Acad. of Sci: of the USSR, Novosibirsk, U.S.S.R.

The crystal structures of dipotassiumantimo$\mathrm{ny}(\mathrm{III})$ hydrotetrasilicate, $\mathrm{K}_{2} \mathrm{Sb}(\mathrm{OH})\left(\mathrm{Si}_{4} \mathrm{O}_{10}\right)$
(I), and dipotassiumantimony (III)oxohexasilicate, $\mathrm{K}_{2} \mathrm{Sb}_{2} \mathrm{O}\left(\mathrm{Si}_{6} \mathrm{O}_{15}\right)$ (II), have been determined. I is monoclinic, $a=6.362, b=10.954$, $c=15.248 \mathrm{~A}, \mathrm{~B}=100.63^{\circ}$, space group $\mathrm{P} 2_{A} / \mathrm{n}$, $Z=4$. II is monoclinic, $a=24.540, b=$ $7.760, c=9.082 \AA, B=102.4^{\circ}$, space group $C 2, Z^{2}=4$. Both structures were solved by the direct and Fourier methods using the diffractometer Syntex-P2, data and refined to the Rvalues of 0.068 and 0.078 , respectively. The structures contain two-dimensional silicaoxygen motifs of topologically new type : $\left(\mathrm{Si}_{4} \mathrm{O}_{10}\right) \rightarrow\left(\mathrm{Si}_{8} \mathrm{O}_{20}\right)^{2 \infty}$ and $\left(\mathrm{Si}_{6} \mathrm{O}_{15}\right) \rightarrow\left(\mathrm{Si}_{12} \mathrm{O}_{30}\right)^{200}$ In the structure I the "vlasovite"-like chains, $\mathrm{Si}_{4} \mathrm{O}_{11}$, join forming a stepped corrugated net, parallel to (001). The Sb^{3+} atoms have tetragonal-pyramidal environments (SbOH is 1.98 and $\mathrm{Sb}-0$ are 2.16-2.25 \AA), a lone pair $E(S b)$ playing a role of a sixth ligand in the trans-configuration with the OH . Both K atoms are seven-coordinated (K-0 are 2.633.19 \&). In general features this structure is compared with that of vlasovite, $\mathrm{Na}_{2} \mathrm{ZrSi}_{4} \mathrm{O}_{11}{ }^{\circ}$
The net of the structure II (with a pseudosymmetry (2/m) can be represented as a linkage of two four-membered haradaite-like chains stretched along the b axis and one four-membered ring: $\mathrm{Si}_{2+2} \mathrm{O}_{12}$ (the chain) $+\mathrm{Si}_{2+2} \mathrm{O}_{12}$ (the chain) $+\mathrm{Si}_{2+2} \mathrm{O}_{12}$ (the ring) $-\mathrm{O}_{6}=$ $\mathrm{Si}_{12} \mathrm{O}_{30}$ (the net). These greatly corrugated nets, parallel to (001), are linked along the c axis by two SbO_{3+2} half-octahedra sharing the face, The $\mathrm{Sb}-0$ distances range from 1.97 to 2.40 . The channel cavities of three types contain one lone pair $\mathrm{E}(\mathrm{Sb})$, two lone pairs $E(S b)$ and four K atoms, respectively, With the K-K distances of $3.25-3.35$ A.
The crystals were synthesized and kindly provided by M.N. Tseytlin and Kh.M.Kurbenov (Phys.-Techn. Inst., Acad. of Sci. of Tadzh. SSR, Dushanbe) along with preliminary crystallographic characteristics and an approximate chemical formula. The initial observed data have been obtained with the assistance of Yu. V. Gatilov(Inst. of Org. Chem. Sib: Dept. Acad. of Sci. of the USSR, Novosibirsk).
08.2-62 CRYSTAL STRUCTURAL STUDIES OF NET MTXED P(SI)-MO-V HETEROPOLYCOMPOUNDS OF THE TWELFTH ROW. R.F.Klevtsova, I.P.SOloVjeva, I.A.Glinska.ja, E.N.Yurchenko. Institute of Inorganic Chemistry, Institute of Catalysis,Siberian Branch of the Academy of Sciences of the USSR, Novosibirsk, J.S.S.R.
The crystal structures of three heteropolycompounds with the different Mo/V ratios have been determined. The crystal data are:
(I)-tetragonal $\mathrm{H}_{5}\left[\mathrm{SiMO}_{11} \mathrm{~V}_{1} \mathrm{O}_{40}\right] \cdot(30-36) \mathrm{H}_{2} \mathrm{O}$; $\mathrm{a}=12.791, \mathrm{c}=18.131 \AA, \mathrm{z}=2, \mathrm{P} 4 / \mathrm{m}$,
(II)-monoclinic $\mathrm{Na}_{3} \mathrm{H}_{6}\left[\mathrm{PMo}_{6} \mathrm{~T}_{6} \mathrm{O}_{40}\right] \cdot 16 \mathrm{H}_{2} \mathrm{O} ; a=13.667$, $\mathrm{b}=15.260, \mathrm{c}=11.529 \AA, \mathrm{~A}=106.98^{\circ}, \mathrm{z}=2, \mathrm{P} 2_{1} / \mathrm{m}$, (III)-monoclinic $\mathrm{Na}_{4} \mathrm{H}_{4}(\mathrm{VO})\left[\mathrm{PMO}_{4} \mathrm{~V}_{8} \mathrm{O}_{40}\right] \cdot 20 \mathrm{H}_{2} \mathrm{O} ; a=$ $10.870, b=21.312, c=11.654 \AA_{i}^{\circ} \mathrm{B}=106.73^{\circ}, z=2, \mathrm{P} 2_{\mathcal{1}} / \mathrm{m}$ 。 The metal atoms (Mo and V) in the Heteropolyanions are statistically distributed according to the law of pseudo-Keggin(I) and Keggin(II and III)structures. In all these structures the anions are connected through water molecules by weak hydrogen boads and in the structures II and III, in addition, by the Na^{+}cations. A characteristic feature of the structure III is the presence of the VO^{3+} group linked to four O cis-atoms of the anion. The way of the anion bonding to the outersphere cations compensating its charge is considered.
08. 2-63 NEW HEXAGONAL FLUOROPEROVSKITES WITH CATION DEFICIENCY.
By E.Herdtweck, SFB 127F, Hans-Meerweinstrasse D-3500 Marburg/Lahn

Numerous hexagonal polytypes of perovskites
have been found. Their structural features have been connected with the stacking periodicity of the anionic layers, leading to the 2H, 3C, 6H, $9 R$ and $12 R$ types.

Investigation of ternary systems EaF $_{2}-A F-\mathrm{MF}_{2}$ ($A=K, R b, C s ; M=N i, F e)$ and $R b F-M F_{2}-M F_{3}$ ($M^{I I}=M^{I I I}=F e$) reveals the existence of two new types of quaternary fluorides : $\mathrm{Ba}_{2} \mathrm{AM}_{2} \mathrm{~F}_{9}$ and $\mathrm{Rb}_{4} \mathrm{M}^{I I_{M}^{I I I}} \mathrm{~F}_{12}$.
Crystals are grown under hydrothermal high-
pressure condition (3GPa, 573K, 1/2h, HF.aq, RbF/MF ${ }_{2} / \mathrm{MF}_{3}$, for the latter system and from molten salts, Table 1 summarizes the crystal data received from single crystal structure determinations. The crystal structures of this compounds are closly related to the $9 R-\operatorname{CsCoF}_{3}-$ type and to the $12 R-\mathrm{Cs}_{2} \mathrm{NaCrF}_{6}$ - type respectively. All X-ray diffraction experiments per-
formed on this phases have shown the presenceof

