C – 228

08. INORGANIC AND MINERALOGICAL CRYSTALLOGRAPHY

mable T

-		10010 1	
pa- tie	phase composition		
nr	outer part	central part	
1	WEW	HA PA+UA	
2	WED+WEW	WEW+HAPA+UA	
3	WEW+WED	WEW	
4	HAPA+STRU	WEW+HAPA	
5	WEW+WED+HAPA+STRU	WEW+HAPA+UA	
6	WEW+HAPA	HAPA	
7	WEW+WED	WEW+WED+HAPA+UA+STRU	
		Table II	

pa- tient nr and stone nr	phase composition	pa- tient nr and stone nr	phase composition
I-1	WEW+WED	III - 1	WEW
1- 2	WEW	<u>111-2</u>	WEW+WED+UA
I-3	WEW+HAPA	IV-1	HAPA+STRU
II - 1	WEW+HAPA+UA+STRU	IV-2	HAPA+STRU+WEW
II - 2	WEW+HAPA+STRU		

coordinate respectively.

The second compound, $BaTiAl_6O_{12}$ is orthorhombic, a = 4.862(1), b = 7.136(2), c = 13.598(3) Å, Pnn2. Its structure consists of ribbons of octahedra joined by sheets of tetrahedra to form parallel 'six-sided' tunnels. The barium ions in the tunnels are tencoordinate.

In the first structure the tunnels are interconnected whereas in the second they are not. A full description of the structures will be presented together with their relevance to the SYNROC process.

References:

- Ringwood, A.E. Safe Disposal of high level nuclear reactor wastes: A new strategy. Australian National University Press, Canberra (1978); and Ringwood, A.E., Kesson, S.E., Ware, N.G., Hibberson, W.O. and Major, A. Geochem. J., <u>13</u>, 141 (1979)
- Kesson, S.E. Rad. Waste Manag. and the Nuclear Fuel Cycle, 4, 1, 53 (1983); and Kesson, S.E., Sinclair, W.J. and Ringwood, A.E. Nucl. Chem. Waste Manag., In press, 1984.
- G.D. Fallon and B.M. Gatehouse, J. Solid State Chem., <u>49</u>, 59 (1983)
- Guha, J.P., Kolar, D. and Volavsek, B. J. Solid State Chem., <u>16</u>, 49 (1976); and Guha, J.P., J. Solid State Chem., <u>34</u>, 17 (1980)

08.2-39

NEW STRUCTURES IN THE BAO-Al_03-TiO2 SYSTEM OF SIGNIFICANCE TO THE SYNROC PROCESS

B.M. Gatehouse, Chemistry Department, Monash University, Clayton, Victoria, 3168, Australia.

Interest in the alkaline earth aluminium titanates, especially the $Bao-Al_2O_3-TiO_2$ system, has heightened due to the work of Professor Ringwood and coworkers (1) on their proposed SYNROC process for the long term storage of radwaste. SYNROC consists principally of three minerals, hollandite ($BaAl_2Ti_6O_{16}$), perovskite (CaTiO₃) and zirconolite ($CaZrTi_2O_2$). Each of these synthetically formed mineral species has been shown to incorporate different radwaste ions in varying proportions (2).

The structure of $Ba_2Ti_9O_{20}$ was determined recently (3) and shown to contain blocked tunnels or cavities of the hollandite type in which barium ions are situated, and as a result of this finding other phases that might be of significance to the SYNROC process have been sought.

The structures of two compounds in the BaO-Al_2O_3-TiO_2 system, whose compositions were previously known but whose crystal systems and symmetries had been incorrectly reported (4), have been determined. The first, Ba_3TiAl_{10}O_{20} is monoclinic, a = 15.631(4), b = 11.373(2), c = 4.981(1), β = 107.77(2)° C2/m. The structure consists of sheets of corner-shared AlO₄ tetrahedra, two deep, linked by corner-sharing to parallel ribbons of edge-shared octahedra. Each ribbon forms part of four separate tunnels of two different types. One is 'five-sided' and the other 'six-sided'; both accommodate barium ions that are ten- and eight-

08.2-40 NEW COMPOUNDS WITH Ge4 $^{\rm 4-}$ TETRAHEDRANE-ANIONS. By J. Llanos, <u>R. Nesper</u> and H.G. von Schnering, Max-Planck-Institut für Festkörperforschung, D-7000 Stuttgart 80.

I-IV-compounds of Na, K, Rb and Cs are not precisely characterized up to now [1,2,3,4]. Besides some clathrate compounds of the M_8X_{46} and $M_2_4X_{136}$ type, only the MX-compounds are observed. Their common unit is the X_4^{+-} tetrahedraneanion which is always coordinated by four metal atoms in form of a distorted cubane M_4X_4 . Different crystal structures arrive from different cubane packings [5]. We have reinvestigated precisely NaGe (P2/c, a=12.373(4), b=6.668(3), c=11.498(3) Å, \mathcal{B} =120.21(2)°; KGe (P43n, a=12.734(1) Å); RbGe (P43n, a=3.198(3) Å and CsGe (P43n, a=13.654(5) Å) to discuss the cubane geometry in different structures [6]. Moreover new ternary germanides of alkaline metals with the composition $M_XM'_{1-x}$ Ge have been prepared and investigated. Two new structure types occur which contain new arrangements of cubanes and exhibit the special character of the Na-Ge4 interaction.

The compounds M_7NaGe_8 crystallize cubic in Pa3 (K₇NaGe₈, a=12.684(1) Å; Rb₇NaGe₈, a=13.165(1) Å; Cs₇NaGe₈, a=13.472(3) Å) with Z=4. They contain the linear M_3Ge_4 -Na-Ge₄ M_3 unit, which exhibits the geometry of a corner-shared double cubane M_3NaGe_4 . One of the large cations M stays without direct contact to Ge₄, preserving the MX composition. The structure of such compounds is therefore represented by a quarternary aristotype M'M"₆NaX₈, which could be rationalized in CsK₆NaGe₈ (Pa3, a=12.879(3) Å).

The compound $\texttt{Cs}_2\texttt{Na}_2\texttt{Ge}_4$ crystallizes with a new structure type, which is related to the <code>NaPb-</code>