08.2-2 CRYSTAL STRUCTURES OF AZIDES CONTAINING TWO DIFFERENT METAL ATOMS. By H.Krischner, Technical University Graz, AUSTRIA. Azide compounds containing two different metal atoms can be prepared from aqueous solutions in various compositions and structure types. Crystal structure analyses of more than twenty azides demonstrate some general principles.
Elements with higher electronegativity have the greatest influence on the structures. They form finite or infinite metal-azide complexes. The coordination polyhedra are often similar to those in the simple azides. The apparent radii of the azide groups vary between 1.25 A and $1.65 \AA$ and can be taken as clue to the bonding strenght. $\mathrm{M}-\mathrm{N}-\mathrm{N}$-bond angles in finite complexes are about 120°.
Elements with lower electronegativity have various coordination numbers and are ionic bonded. $\mathrm{M}-\mathrm{N}-\mathrm{N}-$ bond angles vary between 800 and 180° and central nitrogen atoms of azide groups are sometimes located closer to the metal than terminal nitrogens. In potassium strontium azide hydrate both cations are distributed among identical lattice positions and form a series of solid solutions.
Azide groups are always coordinated with both terminal N-atoms to several metal atoms. The surroundings of the nitrogen atoms are
irregular. N-N-bonds vary between $1.10 \AA$ and 1.28 , the mean distance within azide groups amounts to 1.18 . The $N-N-N$-angles deviate somewhat from 180°.
Water is often situated beside azide groups within the coordination polyhedra.
08.2-3 THE CRYSTAL StRUCTURE OF $\mathrm{CaSnO} \mathrm{O}_{3}$. By A.Vegas, M.T. García-González*, M. Vallet-Regi*** and J.M. Gonzám lez-Calbet**, Instituto Elhuyar, CSIC, Madrid, *Institu to de Edafologia, CSIC, Madrid, **Dpto. Química Inorgānica, Universidad Complutense, Madrid, Spain.
SrSnO_{3} and CaSnO_{3} have been reported to have a perovskite-like structure, the former being cubic, with $a=2 a_{c}\left(a_{c}\right.$ is the cell parameter of the parent cubic perovskite ${ }^{\text {E }}{ }_{1}$) (Muller and Roy, The major ternary structural families, Springer Verlag, Berlin (1974)) and the last, orthorhombic, with cell dimensions a $\sqrt{2}$, 2a , a $\sqrt{2}$ (Coughanour, foth and Fillmore, J. Research NBS (1954), 53, 201).

However, recent studies by electron diffraction and microscopy (Alario et al. (1983) unpublished results), suggest the existence of multitwinned crystals, in SrSnO_{3}, leading to a cubic symmetry arising from the superposition of three orthorhombic (slightiy distorted cubic) nets. Thus, the same cell-type of CaSnO_{3} ($\mathrm{a}_{\mathrm{c}} \sqrt{2}$, $2 a_{6}, a_{c} \sqrt{2}$) must be assigned to SrSnO_{3}. To elucidate ${ }^{c}$ the differences between both structures and to confirm the results obtained by electron microscopy, we have undertaken their crystal structure determination. The struture of. CaSnO_{3} is presented below.
$\mathrm{CaSnO}_{3}, \quad{ }_{\mathrm{Pbnm}}, \quad=5.532(2) \quad b=5.681(2) \quad \mathrm{c}=7.906(2) \AA$ $\mathrm{Z}=4$. The structure was solved from single crystal data, collected with Mo Ka radiation and corrected for absorption. Anisotropic refinement using the high-order reflexions ($\sin \theta / \lambda>0.40 \AA^{-1}$) gave a final $\mathrm{R}=0.026$.

The structure (Fig.1) is similar to that of CaTiO_{3} and GdFeO_{3}, and its relation with the parent cubic structure (E2) has been well stablished (O'Keeffe and Hyde, Acta Cryst. (1977), B33, 3802). The SnO 6 octahedra are slightly compressed, with 0-Sn-0 angles from 87.65 to 92.35°, but with almost equal $\mathrm{Sn}-0$ bond-lengths (2.061-2.063(4) A). The $\mathrm{Sn}-0-\mathrm{Sn}$ angles are $146.65(30)^{\circ}$

for octahedra lying in the $a b$ plane (Fig.1) and 148.23(30) ${ }^{\circ}$ for those linked paraliel to the \underline{c} axis, and corresponding to $\mathrm{Sn} . . . \mathrm{Sn}$ distances of 3.963 and $3.953 \AA$, respectively (mean value $3.958 \AA$). From these distances, the "one-angle" radius for Sn . can be evaluated as $1.98 \AA$. The Ca atoms appears eight-coordinated, at the center of an irregular bicapped trigonal prism, with Ca-0 distances of $2 \times 2.791(4), 2 \times 2.640(4), 2.414(6)$, $2 \times 2.364(4)$ and $2.344(5) \AA$. These bonds are represented as dotted lines in Figure 1.

The coordinations numbers for aniones are: four for $O(1)$ (with two Sn at 2.063 A and two Ca at distances of 2.344 and 2.414) and five for $O(2)$ (two $S n$ at $2.061 \AA$ and three $C a$ at $2.364,2.640$ and $2.792 \AA$). The SrSnO_{3} crystals, whose orthorhombic unit cell dimensions would be approximately $a=5.702 \quad b=5.702$ $c=8.064 \AA$, are receiving our attention.
08. 2-4 Structural aspects of the phase transitions IN TRICALCIUM SILICATE Ca3SiO5 ($=\mathrm{C}_{3} \mathrm{~S}$) Y. Takéuchi, F. Nishi, Mineralogical Institute, Faculty of Science, University of Iokyo, Hongo, Tokyo I13, and I. Maki, Department of Inorganic Materials, Nagoya Institute of Iechnology.
The crystal structure of the rhombohedral phase (Rh) of C3S, which is fundamental to those of the seven polymorphs of the material, has been determined based on a set of 371 diffraction intensities measured with a_{0} single-crystal diffractometer at $1200^{\circ} \mathrm{C}$ [a=7.135(6) A, $\mathrm{c}=25.59(2) \AA, \mathrm{R} 3 \mathrm{~m}, \mathrm{Z}=9 \times \mathrm{Ca}_{2} .98 \mathrm{Al}_{0} .04 \mathrm{Si}_{0} .9805, \mathrm{R}=10 \%$]. Although the structure is similar to the reported rhombohedral average structure ($<\mathrm{M}>$) (Jeffery, Acta Cryst. (1952) 5, 56) of the monoclinic superstructure of the MI phase, it is highly characterized by orientational disorder of the silicate tetrahedra: (a) a fraction, by 70%, of one of the three independent tetrahedra on the threefold axis points the -c, direction (a D orientation), while the remaining fraction points the +ç direction (a U orientation), and (b) all tetrahedra are tilted in such a way that their apical bonds, otherwise on the threefold axis, slightly swing away from the threefold axis with Si's being kept in the axis.
The superstructure of MI has also been fully determined based on 3886 diffraction intensities [$a=33.083(8) \AA$, $b=7.027(2) \AA, c=18.499 \AA, \beta=94.12(2)^{\circ}, C m, Z=36 \times \mathrm{Ca}_{2} .98$ $\mathrm{Mg}_{0.1 \mathrm{I}} \mathrm{SiO}_{5}, \mathrm{R}=9.9 \% \mathrm{~J}$. Fig. 1 shows the arrangement of the silicate tetrahedra in a plane corresponding to the mirror plane passing through the origin and parallel to (110) of Rh ; the broken lines trace the cell of 〈MI>. In terms of the orientational characteristics with respect to the subcell axes, the silicate tetrahedra may be classified into three categories: (1) those having fixed orientations, (2) those showing disorder in the two orientations U and $D(U-D$ disorder), and (3) those showing U-D-G disorder, where G (Fig.1) represents
a new type of orientation which is not found in the Rh structure. For each set of tetrahedral in the category (2), the fraction (\%) of U is indicated in Fig.1, while for each set of tetrahedra in (3), those of U and D are indicated by a set of two numbers, the top indicating the fraction of J and the bottom that of D .

It is notable that the relative locations of Ca, Si, and the oxygen atoms, not bonded to Si, of MI are basilcally the same with those of Rh and TI (Golovastikov et al., Sow. Phys. Cryst. (1975) 20, 441). The series of phase transitions in $\mathrm{C}_{3} S$ may hence be structurally characterized by the change in mode of orientational order-disorder of the silicate tetrahedra.

Fig.l (one of the threefold axes of <MI> is indicated)
08.2-5 NEW PRUSSIAN BLUE-RELATED CYANIDE CRYSTAL STRUCTURES: ONE-, TWO- AND THREEDIMENSIONAL LINKING OF HEXACYANO GROUPS BY HYDRATED CATIONS. By M. Witzel and D. Babel, Sonderforschungsbereich 127 and Fachbereich Chemie der Philipps-Universität, Marburg, Germany

The cyanocomplexes listed in Table I were prepared and characterized by full single crystal structure determinations. The relations to the Fm mm structure types of eliasolutes $\mathrm{Cs}_{2} \mathrm{LiM}(\mathrm{CN})_{6}$ (B.I. Swanson and R.R. Ryan, Inorg. Chem. (1973) 12, 283) and prussian blue (A. Ludic et al., Inorg. Chem. (1970) 9,222 ; (1980) 19, 956) are discussed.

The alkali compounds are elpasolite variants, which contain Rb^{+}or the hydrated ions $\left(\mathrm{Na} \cdot \mathrm{H}_{2} \mathrm{O}\right)^{+}$or $\left(\mathrm{Li} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)^{+}$, resp., in increasingly distorted octahedral N_{6} cavities of six surrounding hexacyano groups. The resulting coordination is tetrahedral NaON_{3} and $\mathrm{LiO}_{2} \mathrm{~N}_{2}$, resp., for the smaller cations (M. Witzel and D. Babel, Z. Naturf. (1984) 39b, in press).

In the other compounds the M(II) ions Mn and Cd, resp., are octahedrally coordinated by $4 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{~N}$ (trans) in the chain structure of the octahydrate (W . Kurtz and D. Babel, Solid State Commun. (1983) 48 , 277) and by $4 \mathbb{N} \div$ $2 \mathrm{H}_{2} \mathrm{O}$ (trans) in the layer structure of the tetrahydrate. In the "trihydrate" structure $1 / 5$ of the M(II) ions have
only square pyramidal N_{5}-coordination. These ions connett the square meshes of neighbouring layers in turn up and down in the third dimension, to produce a spacious framework. Additional uncoordinated water is hydrogenbonded within the three structure types, which contrast by well defined and ordered $M O_{n} N_{6-n}$ octahedra to the disordered species of the prussian blue structures.

Table I:

$$
\begin{array}{lllll}
\mathrm{AMnCo}(\mathrm{CN})_{5} \cdot 8 \mathrm{H}_{2} \mathrm{O} & \mathrm{P} 4 / \mathrm{n} & 2 & 1062.2 & 1046.2
\end{array}
$$

8. 2-6

NEW METASTABLE TELLURIUM OXIDE PHASES WITH HIGHLY DISORDERED CaFz STRUCTURES By M.Trömel, H.-G.Burckhardt, H.Heydarian, F.W. Hützler and E.Münch, Institut für Anorganische Chemie, D-6000 Frankfurt a.M. 50

By quenching $\mathrm{SrO}-\mathrm{TeO}_{2}$ melts, $\mathrm{SrTe}_{5} \mathrm{O}_{11}$ is formed, in which the heavy atoms are distributed at random among the metal positions of a CaF_{2} structure with incomplete oxygen packing (H.-G. Burckharat, M.Trömel, Acta Cryst. (1983) C39, 1322). Extraordinarily high apparent temperature factors are due to large irregular displacements of all atoms. This kind of disorder (undefined short range order in spite of highly symmetrical long range order) results from tellurium being placed in a Car Clepe oxide which $^{\text {-typ }}$ does not meet the geometrical requirements of the $T e(I V)$ coordination. Similar phases are formed from TeO_{2} and oxides of divalent and trivalent metals with ionic radii between 0.93 and $1.21 \mathrm{~A}(\mathrm{~Pb}, \mathrm{Y}, \mathrm{La}$, lanthanides). Their lattice constants (\AA) and approximate formulae are:

$\mathrm{SrTe}_{5} \mathrm{O}_{11}$	5.655	$\mathrm{Gd}_{2} \mathrm{Te}_{6} \mathrm{O}_{15}$	5.611
$\mathrm{PbTe}_{3} \mathrm{O}_{7}$	5.647	$\mathrm{~Tb}_{2} \mathrm{Te}_{6} \mathrm{O}_{15}$	5.600
$\mathrm{Y}_{2} \mathrm{Te}_{6} \mathrm{O}_{15}$	5.586	$\mathrm{DY}_{2} \mathrm{Te}_{6} \mathrm{O}_{15}$	5.587
$\mathrm{La}_{2} \mathrm{Te}_{6} \mathrm{O}_{15}$	5.695	$\mathrm{HO}_{2} \mathrm{Te}_{6} \mathrm{O}_{15}$	5.575
$\mathrm{Pr}_{2} \mathrm{Te}_{6} \mathrm{O}_{15}$	5.668	$\mathrm{Er}_{2} \mathrm{Te}_{5} \mathrm{O}_{13}$	5.567
$\mathrm{Nd}_{2} \mathrm{Te}_{6} \mathrm{O}_{15}$	5.655	$\mathrm{Tm}_{2} \mathrm{Te}_{5} \mathrm{O}_{13}$	5.551
$\mathrm{Sm}_{2} \mathrm{Te}_{6} \mathrm{O}_{15}$	5.638	$\mathrm{Yb}_{2} \mathrm{Te}_{4} \mathrm{O}_{11}$	5.537
$\mathrm{Eu}_{2} \mathrm{Te}_{6} \mathrm{O}_{15}$	5.617	$\mathrm{Lu}_{4} \mathrm{Te} \mathrm{FO}_{20}$	5.491

Cere $_{6} \mathrm{O}_{(14-x)} \quad(\mathrm{a}=5.675 \mathrm{~K}$) is partly reduced when prepared from CeO_{2} and TeO_{2}. All phases decompose between 300 and $600^{\circ} \mathrm{C}$, forming stable crystalline compounds.

