08. INORGANIC AND MINERALOGICAL CRYSTALLOGRAPHY C - 214

08.1-16 FRAMEWORKS AND A CLASSIFICATION SCHEME FOR INORGANIC AND INTERMETALLIC STRUCTURE TYPES. By <u>E. Hellner</u>, Institute for Mineralogy, Philipps-Uni-versity, D- 3550 Marburg/L., Germany.

The 2.400 cubic structures of inorganic compounds (ICSD, Bergerhoff, Bonn) and the 1.800 cubic ones of intermetallic compounds (MDF, Calvert, Toronto) can be grouped into about 400 structure types. These types have been described and classified with the aid of nearly 200 frameworks.

The symbolism permits a classification into families, main- and subclasses. 40 % of the cubic structure types belong to the I-, P- and F-family (E. Hellner, Structure and Bonding (1979) 37, 61).Example: F(Cu-type) with the subclass J(O-framework in ReO,,CaTiO,), F2(8th order, O-framework in spinel) with subclasses $T\{o-framework in cristobalite, Cu-framework in MgCu_{2})$ and $[F"_{2}-I(4t)]$ (S-framework in tetrahedrite). Another 40 % of the cubic structure types belong to the corresponding polyhedra families. In these cases the equipoints of the frameworks of the I-, P- or F-family are replaced by polyhedra (centered or not).Examples: W-type, O-framework in Cu₂O

I[4t] F-framework in SiF₄, S-framework in Tl_3VS_4

I[60] F-framework in SiF₆,

 $I_2[60]$ in garnet $Ca_3AI_2(SiO_4)_3$ and Hg_3TeO_6 ; in $RhBi_4$, in $(NH_4)_4 Fe(CN)_6^{*1,5H_2O}$

I[12i] Al-framework in WAl₁₂; O-framework in NaMn₇O₁₂, Cu3Ta2Ti2012, and in In(OH)3.

The heterogeneous (O and H_2 O)-framework in alumn

 $KAl(SO_4)_2$ 12H₂O can be described as $F(60)+F'(60)+P_2'x(4t)$. In addition there exist less comprehensive families and

polyhedra families derived e.g. from the Y^{**} complex for Si(III)-H.P. and in Th₃P₄ and CaTlS₂, the

 $\pm \gamma$ complex for N₂, for FeSi, in FeS₂ and CO₂, the

S complex for Ga(II)-H.P., in Cu_2As and in $K_2Mg(SO_4)_3$. Other families are derived from heterogeneous frameworks: [I+W] for B-W(A15)type, in $\alpha-O_2$ and KGe,

[D+T'] for MgCu₂, in argyrodite Ag₈GeS₆

 $[^{Y}(31)+D\underline{x}]$ for $\beta-Mn$, Au_4Al , in $\beta-SnWO_4$ and $RbAg_4J_5$.

The 3.500 tetragonal inorganic structures with about 900 structure types (including 250 types of intermetallic compounds) add distorted types derived from cubic ones: indium with distorted F;

Pa, B-Np, B-Hg with distorted I;

BiIn, TIF, AsCe with distorted F, F' (NaCl) etc.

Different orders complete the families: order 2 : F₁₁₂ in stannite, chalcopyrite, α -ZnCl₂, B-Cu HGL : L., in CuTi

order
$$2\frac{1}{2}$$
 : F_{M} in MONi₄ with $M = \frac{3}{2}, \frac{1}{2}, 0/-\frac{1}{2}, \frac{3}{2}, 0/0, 01$
order 3 : I_{112} in BBe, TaSi₂

113 order 4 : I 114 in Pd5Ti3, AI5Ni2Zr

- order 6 : I116 in PbPdT12
- order 7 : I 117 in Cu4Ti3

order 9 : I_{331} in $V_{z}E_{5}$ Layer descriptions for the cubic structures of Cu, NaCl, ZnS, $CaTiO_3$, Mg_2AlO_4 , $MgCu_2$ etc. are extended to the

hexagonal stacking variants like Mg, Sm, Am, wurtzite, hexagonal perovskites, hexagonal spinels, Laves phases etc. with the aid of the nets $H(3^6)$, $G(6^3)$ and N(3636) and the Jagodzinski symbols. Edge-centered stackings of $H(3^6)$ nets with the corresponding symbols f, q or d for the 2-, 3- and 4-layer types are realized in Pa, MoSi_ CrSi_, $\alpha\text{-Pu},$ TiSi_.

08.2–1 INFERENCES ON STRUCTURAL RELATIONSHIPS BASED ON SIMILARITIES BETWEEN POWDER PATTERNS IN THE CASE OF Na-Ca-SILICATES. By <u>R.X. Fischer</u> and E.Tillmanns, In-stitut für Geowissenschaften, Universität Mainz, Germany *present address: Dept. Geol. Sci., Univ. Illinois at Chicago, Chicago, Illinois 60680.

According to similarities in powder diagrams the crystal structures of Na₂CaSiO4, Na₂Ca₂Si₃O₉ and Na₄CaSi₃O₉ are known to be closely related. Usually the comparison of powder patterns is used to infer structural relationships. In some cases this leads to wrong conclusions as ships. In some cases this leads to wrong conclusions as for Na₄CaSi₃Og which is supposed to be isostructural to the six-ring aluminate Ca₃Al₂O₆ but actually is a 12-ring silicate (Fischer and Tillmanns, Z. Krist. (1984) in press). The structure of Na₄CaSi₃O₉ is related to the orthosilicate Na₂CaSiO₄ (Fischer, thesis (1983) Uni-versität Mainz) and to the six-ring silicates of high and low temperature modifications of Na₂Ca₂Si₃O₉ (Fi-scher and Tillmanns, N. Jb. Miner. Mh. (1983), 1983, 49-59) by a similar substructure for the cations. It fits a cubic or pseudocubic cell of 7.5 Å. The subcell parame-ters are: ters are: aubaall name

compound	a [Å]	[param. ∝[°]	symmetry
Na ₂ CaSiO ₄	7.443	90	cubic
high-Na2Ca2Si3Oo	7.448	88.88	rhombohedral
low -Na2Ca2Si3Oo	7.469	88.93	trigonal
Na4CaSizOg	7.544	90	cubic

the figure shows projections of the crystal structures of these compounds. a) Na4CaSi3O9 with the 7.5 Å-subcell b) h-Na₂Ca₂Si₃O₉ in rhombohedral setting (1-Na₂Ca₂Si₃O₉ has a slightly distorted structure) c) Na₂Ca₃Si₀ with one out of 124 different arrangements for the SiO₄-tetrahedra in the unit cell. Compared to the scattering power of the cations the influence of oxygen on the intensities is very weak and does not sufficiently affect the powder pattern.

Na4CaSi309 // [001]

H - Na2Ca2SI309 // [00] rh

Na2CaSiO4 // [001]