given crystalline structure, the experimental bond lengths D(n_{\alpha}) with $\alpha{=}A,$ B,... and the number I $_{\alpha}$ of equivalent bond lengths can be obtained. Our analysis is based on the bond length differences (BLD) $D(n_A)-D(n_\alpha)$ and not on D(n). We select an appropriate hybridization level of Fe α to obtain the suitable n_c, n₁, and R_o(1) of Fe and obtain n and R(1) of Si, N, P, O, Al from crystalline Si and from the atomic spectroscopic data for N₂, P₂, O₂ and AlO. Then, by our theory of BLD analysis the covalent bond electron pair numbers n can be calculated and the theoretical $D(n_{\rm e})$ and $m_{\rm e}^{24}$, $m_{\rm e}^{2}$ can be deduced. The results for our eight structures are listed below:

Structure	, Fe.94	Ο _γ -Fe	γ'-F	e ô-F	e Fe ₇ S	i(Fe _{tt})	2 Fe ^C N	(Fe ^f),	FeP	FeA1
Fe	Fe	Fe	Fe	Fe	Fer	Feit	Fe ^C	Fef		Fe
σ of Fe	1	11	11	11	11	14	6	12	16	18
C _{to}	0	.334	.334	.334	.334	.571	.095	.413	.874	1
			2.556			.469	1.9	25	2.300	
	2.153	2.546	2.537	2.490	2	.449	1.8	94	2.262	
	014					.020	.0	31	.038	
m ¹ Theor.	3.333	2.168	0.723	2.168	2.168	1.40	1.909	2.948	0.41	0
		2.216			2.14		2	1	0.41	0?
۵m _B	0.033	048	007		0.03	0.06	0.091	052	0	0

The interesting feature is the linear relationship between ${\rm m}_{\rm B}({\rm Exp.})$ & ${\rm C}_{\rm tor}$; only Fe of FeP is not near the hybridization level. In view of this feature and the smallness of ΔD and $\Delta m_{\rm B}$ for the ten Fe atoms in the eight structures, the analysis of valence-electron structure appears to be correct to the first order of approximation.

08.2-50 ZINC IRONCYANIDES WITH ZEOLITIC FRAMEWORK OF RHOMBIC TYPE $n \left[(ZnN_4)_3 (FeC_6)_2 \right]$. By <u>P. Gravereau</u>, E. Garnier and A. Hardy, Laboratoire de Cristallochimie Minérale, Université de Poitiers, 40, Av. du Recteur Pineau, 86022 Poitiers, France.

The new rhombic structural type determined for the zeolitic ironcyanide ${\rm K_2Zn_3[Fe(CN)_6]_2.nH_2^O}$ by the present authors (Acta Cryst. (1979).B35.2843) appears to be characteristic of a more important family. This structure, in which FeC_6 octahedra and ZnN_4 tetrahedra are held together by the (CN) ions to constitute a three dimensional frame with large ellipsoidal cavities, can be found for the following compounds :
- zinc ferrocyanides N₂^IZn₃ [Fe^{II}(CN)₆]₂.nH₂O
Structural studies have been done for compounds

with M^I = Na, K, Cs. - zinc ferricyanide Zn Fe^{III}(CN)₆]₂.nH₂0

This rhombic phase of zinc ferricyanide is stable under room conditions. Single crystals have been obtained.

All these compounds appear to be limits of the series $M_{2(1-x)}^{I} 2n_{3} \left[Fe_{1-x}^{II} Fe_{x}^{III} (CN)_{6} \right]_{2} \cdot nH_{2}^{0} \text{ with } x \in [0, 1] \text{ . The } variability of x and of the two parameters } (P_{H_{2}^{0}} \text{ and } T)$

of the divariant zeolitic equilibrium, together with the ion exchange behavior of these ironcyanides, explain the diversity of results found in literature.

08.2-51 CRYSTAL STRUCTURES OF A SERIES OF SYNTHETIC Fe PHOSPHATES. By O.V. Yakubovich, E.N. Matviyenko, Yu.K. Kabalov, Yu.K. Egorov-Tismenko, M.A. Simonov, N.V. Belov, Department of Geology, Moscow

State University, Moscow, USSR.

The crystal structures of Fe phosphates have been

The Crystal structures of re phosphates have been studied by X-ray analysis. Frameworks of Fe octahedra form the basis of the structures of Fe₂[PO₄]F, Fe³⁺+(Fe³⁺₃Fe²⁺₅)₁₈[PO₄]₁₄ and (Fe_{0.76}Zn_{0.24})₃.[PO₄]₂. In Fe₂[PO₄]F they are composed of chains composed of four Fe octahedra sharing common edges, while in Fe³⁺₇+(Fe³⁺₈Fe³⁺₅)₁₈[PO₄]₁₄(OH)₂₄ they common consist of columns of Fe-octahedra joined by common faces. Similar columns also form a framework of the structure of $(Fe_{0.75}Zn_{0.24})_3[PO_4]_2$, but the Fe octahedra, in triplets, are connected not by common faces but by common edges

common edges. In the LiFe[P0₄] structure these chains are joined into the "chess"-type layers. When the structures of both Li- and Fe polyhedra are present, the LiFe[P0₄] structure shows the "olivine" strips with chains of Li octahedra encrusted with Fe. In Na(Fe_{0.5}Zn_{0.5})[P0₄]Fe octahedra encrusted with Fe. In Na(Fe_{0.5}Zn_{0.5})[P0₄]Fe octahedra are joined together along the edges into in-finite columns resembling the "olivine" strip. In KFe[P0₄]F the Fe octahedra sharing common vertices, form chains intersecting in the (OIO) projection. The Na₂(Fe₃³⁺5Fe₅²⁺5₂)Fe²⁺[P0₄]₃ structure is made up of chains of Fe octahedra linked together along edges and strength-ened by P0₄ tetrahedra. In Na₂Fe[P0₄](OH), Fe octahedra joined in pairs along a face are linked together by common vertices and strengthened by P0₄ tetrahedra. The common vertices and strengthened by PO4 tetrahedra. The two-row chains of triplets of Fe octahedra, joined together along a face into a column along an edge, are characteristic for $Na_{2-x}Zn_xFe_3[P0_4]_2(OH_{2-x}O_x)$.

When the cations of alkali metals are present, they enter the structure of Fe phosphates as single units. Most of the compounds considered are synthetic modifi-

cations of minerals: maricite, sarkopside, zwieselite, lipscombite, triphyline and alluaudite. The compound having an idealized formula $Na_2Fe_3[PO_4]_2.(OH)_2$ is structurally similar to the mineral simanite $Mn_3[PO_4][B(OH)_4](OH)_2$.